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 This study is divided into three parts. Part I deals with the mechanism of the self-

initiated polymerization (or thermal polymerization) of styrene in the gas phase.  In this 

work, we present the first direct evidence for the thermally self-initiated polymerization of 

styrene in the gas phase. Our approach is based on on-line analysis of the gas phase 

Oligomers by mass-selected ion mobility. The mobility measurements provide structural 

information on the ionized oligomers based on their collision cross-sections (Ω) which 

depend on the geometric shapes of the ions. Theoretical calculations of possible structural 

candidates of the Oligomers ions are then used to compute angle averaged Ω for 

comparison with the measured ones. The agreement between the measured and calculated 
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Ω of the candidate structures provides reliable assignments to the structures of the 

oligomers. Furthermore, collisional-induced dissociations of the mass-selected oligomer 

ions provide further support for the structures obtained from the mobility measurements.  

Our results indicate that the gas phase polymerization of styrene proceeds via essentially 

the same initiation mechanism (the Mayo mechanism) as in condensed phase 

polymerization.  The structural evidence, the mechanism of formation and the observed 

fragmentation pathway of the growing dimers and trimers in the gas phase are presented 

In Part II the solvation of a variety of metal cations by benzene clusters have been studied 

using laser vaporization, cluster beam and time-of-flight mass spectrometry techniques. In 

this work strong magic numbers were observed for clusters containing 10, 13 and 14 

benzene molecules depending on the nature of the metal cation involved. The metal cations 

exhibiting preference solvation by 14 benzene molecules show a strong tendency to form 

sandwich structures with two benzene molecules.  The interpretation of these results in 

view of the proposed structures and the growth patterns of the clusters are presented.  In 

Part III, the work is focused on the investigation of the intracluster ion molecule reactions 

following the generation of Mg+ within the polar clusters (water, methanol, ether and 

acetonitrile). 
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CHAPTER 1 Introduction 

 

In the last twenty years, cluster science has become a rapidly expanding field of 

interdisciplinary science in both experimental and theoretical studies. Clusters are finite 

aggregates of atoms or molecules that are bound by forces which may be metallic, 

covalent, ionic, hydrogen-bonded or Van der Waals in character and may contain from a 

few to thousands of atoms or molecules.  The study of molecular clusters has grown 

explosively since the early 1980's1-8. One of the driving forces in cluster science is the 

promise that studying gas phase species would provide insight into condensed phase 

behavior2,3,8.  Studies so far indicate that chemical or physical properties may vary strongly 

with cluster size3-6,8. Eventually they show a gradual approach to the values that 

characterize the particular bulk material. This behavior, represented in Figure 1, displays 

the property, Χ (n), as a function of n, starting from a single molecule (n=1) and 

proceeding to the condensed phase value (n = ∞).9  As shown, the irregular pattern 

observed for small clusters is responsible for the existence of “magic numbers” in the Χ (n) 

vs n plot. However for larger clusters, those specific effects vanish and Χ(n) interpolates 

smoothly to the corresponding bulk value Χ(∞).  The role of intermolecular forces in 

bringing about these changes in the material behavior is critical, and may provide valuable 

information regarding the behavior in complicated processes in the bulk materials. 
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 Ion-molecule interactions play an important role in a diverse range of chemical and 

biochemical systems. Examples include substitution reactions, transmembrane ion 

transport, ion protein binding, upper atmospheric chemistry and nucleation phenomena3-5.  

The solvation of single ions with a selected number of neutral solvent molecules provides a 

unique opportunity to study intrinsic ion-neutral interactions, which can be studied in the 

absence of counter ions. 

 

Figure 1: Physical or chemical properties as a function of the number of atoms or 
molecules. 

 The mechanism of the self-initiated polymerization (or thermal polymerization) of 

styrene in bulk liquids or solutions has been a challenging subject of research since the 

early days of polymer chemistry.10-37 This is a phenomenon of not only fundamental and 

theoretical intrest but also of great commercial interest related to the industrial production 

of polystyrene and many of its secondary products.38 The generally accepted mechanism 

for the spontaneous polymerization of styrene is known as the Mayo's mechanism20-22 
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Early studies to investigate the phenomenon in the gas phase were hampered by the 

condensation of the involatile polymer products and by the effects of surfaces and walls 

where heterogeneous polymerization took place38. However, the true gas phase, thermal 

polymerization of styrene was demonstrated more than fifteen years ago using an elegant 

approach based on nucleation from the vapor phase13,29 In this approach, the thermally self-

initiated oligomers growing in a supersaturated styrene vapor act as “condensation nuclei” 

for the formation of observable liquid drops (containing styrene oligomers and monomers) 

which can be detected by light scattering14. Due to the ultra sensitivity of the nucleation 

phenomena, one can in principle detect a single polymer molecule (oligomer) from the 

vapor phase.5 Unfortunately, the nucleation approach provides no direct information on the 

initiation mechanism or on the structures of the growing oligomers. This information is 

still unavailable since it cannot be accurately obtained from the analysis of the condensed 

(deposited) polymer products from the gas phase. 

 The work described in this thesis is presented in six chapters.  Chapter 2 deals with 

the experimental techniques and methods that include cluster beam generation, ionization 

methods, time of flight mass spectrometry (TOFMS) and Quadrupole Mass Selected-Ion 

Mobility-Quadrupole Mass Spectrometer (QMS-IM-QMS).  Chapter 3 focuses on an 

experimental and theoretical study of the structures and the mechanism of the thermally 

self-initiated polymerization of styrene in the gas phase. Our approach is based on on-line 

analysis of the gas phase oligomers by mass-selected ion mobility.39-41 The mobility of a 

gas phase ion is a measure of how fast it moves through a buffer gas under the effect of an 

electric field.  The mobility measurements provide structural information on the ionized 
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oligomers based on their collision cross-sections (Ω) which depend totally on the 

geometric shapes of the ions.42-44 Theoretical calculations are required for the average 

collision cross sections for the calculated geometry for comparison with the experimental 

one.  Density Function Theory (DFT) 45 was employed to optimize the lowest energy 

structure of possible structural candidates of the styrene oligomer ions. These structures are 

based on the proposed styrene oligomerization mechanisms available in the literature.  For 

example, the candidate structures represent structures proposed by Flory36, complex 

formation proposed by Kirchner and Patat35, cationic mechanisms46, bimolecular formation 

of monoradicals31, and finally Mayo's mechanism.22 These structural candidates are then 

used to compute the angle averaged Ω for comparison with the measured ones. The 

agreement between the measured and calculated Ω of the lowest energy candidate 

structures provides reliable assignments to the structures of the oligomers. Furthermore, 

collisional-induced dissociations of the mass-selected oligomer ions provide further 

support for the structures obtained from the mobility measurements. The results show that 

the gas phase ion mobility is crucial for identifying the structures and to investigate the 

mechanisms in the bulk media.  In Chapter 4, the work on the solvation of a variety of 

metal cations by benzene molecules using laser vaporization, cluster beam and time-of-

flight mass spectrometry techniques is presented.  In the benzene systems, strong magic 

numbers have been observed for clusters depending on the nature of the metal cation 

involved.  This work is focused on the interpretation of these results in view of the 

proposed structures and the growth patterns of the clusters. Next, Chapter 5 deals with 

intracluster ion molecule reactions following the generation of the magnesium cation Mg+ 
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within the cluster. For these reactions, the work is extended to include several polar 

molecules such as (H2O)n, (CH3OH)n, (CH3OCH3)n, and (CH3CN)n.  The summary of the 

work and conclusions drawn are presented in chapter 6. 
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CHAPTER 2 : Experimental Techniques and Methods 

 

The experiments were performed using a home-built Wiley-McLaren type time-of-flight 

mass spectrometer (TOFMS)47,48, and a home-built quadrupole mass selected-ion mobility-

quadrupole mass spectrometer (QMS-IM-QMS)49. The instruments, experimental 

techniques and methods are described in the following sections. 

2.1 Cluster Generation 

In our laboratory we have used pulsed supersonic adiabatic expansion50,51, which consists 

of a high-pressure region (1 to 3x103 torr) within a nozzle through which the sample 

seeded into an inert carrier gas and expands into a low-pressure region (10-5 to 10-6 torr). 

As the gas mixture exits through the nozzle it converts the thermal energy from within the 

high-pressure source into directed beam kinetics energy. If Cp is the heat capacity of the 

expanding gas at source temperature (Ts), and Tb is the beam temperature, then the energy 

balance of an ideal gas is given by:2 

    Cp Ts = Cp Tb + mu2 / 2   Equation 1 

 m is the mass of the expanding gas, and u is the velocity.  Since mu2
 is positive, Tb is 

lower than the source temperature Ts. The low temperatures in free jet expansion lead to 

supersaturation and the possibility of condensation52.  In other words, as the gas mixture 

moves out from the nozzle, it expands, and as it does so, it cools. This cooling promotes 

condensation.  During the condensation process neutral clusters are formed. The expansion 

is adiabatic, i.e. no energy is lost from the beam. As expansion increases, the collision rate 

falls and the result is a beam of molecules all moving in the same direction. 
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2.2  Ion generation 

 The ions are generated by two ionization techniques, namely Laser 

Vaporization/Ionization (LVI) and Electron Impact ionization (EI).  

2.2.1  Electron Impact Ionization (EI) 

In our laboratory, an Extrel axial beams ionizer model 04-11 coupled with a quadrupole 

mass filter is used. The Ionizer consists of tungsten filament where the electrons are 

generated by thermoionic emission. These electrons are then accelerated into the ion 

region, where they interact with the incoming neutral molecular beam, which is formed by 

a supersonic adiabatic expansion, resulting in the creation of ions. These ions are then 

extracted from the ion region and focused into the quadrupole mass filter using Einzel 

lenses.  Electron energy in normal experimental conditions is varied between 80 – 120 eV 

to yield strong ion intensity. 

2.2.2 Laser Vaporization/Ionization (LVI) 

Laser vaporization of a metal surface is a widely used technique to generate metal cations, 

but the mechanism of this process is not well defined. However, thermal heating effect of 

the laser is believed to be the main mechanism53.  Basically a high energy pulsed -laser 

beam is focused onto a very small surface area.  Plume will be generated containing; 

ground and exited state atoms, clusters of atoms, ions54 of the sample and electrons.  In our 

laboratory, we used a second harmonic (λ=532 nm) pulse of a Nd:YAG laser with ~10 

mJ/pulse, at a repetition rate of 5-8 Hz, focused onto a 0.01cm2
 metal surface area, using a 

lens with a focal length of 30 cm.  The result is a very high energy flux ~ 107 W/cm2, 
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which causes instantaneous increase in the metal surface temperature of up to 

approximately few thousand kelvins within 5-7 ns pulse width.55This temperature is so 

high, and because the laser pulse is short (5-7 ns), vaporization of atoms from the target 

becomes a very efficient process electrons will be ejected and will perhaps ionize those 

metal atoms, as in the electron impact process. 

 

2.3 Time-of-Flight Mass Spectrometer (TOFMS) 

The experiments are performed using a home- built Wiley-McLaren47,48 type time-of-flight 

mass spectrometer (TOFMS), as shown in Figure 2. The set up consists of two vacuum 

chambers. The source chamber is pumped by a Varian VHS-6” diffusion pump, 3000 L/s 

(He).  This chamber houses a metal target, which is mounted on a sample-holder placed 8 

mm downstream from a pulsed valve/nozzle. The pulsed valve/nozzle, a General Valve 

series 9, coupled with a 200-µm diameter conical nozzle is used to generate the cluster 

beam by supersonic expansion of a gas mixture of the reagent vapor, seeded in He (ultra 

high purity Spectra Gases 99.999%) with a backing pressure of 3-8 atm, through a 0.5 mm 

nozzle. The molecular beam containing cluster ions skimmed through a 5mm diameter 

skimmer cone.  This skimmer separates the first chamber and second chamber.  The second 

chamber, the flight tube chamber, contains the extraction region, which consists of three 

plates arranged in the order repeller, accelerator and ground plate.  There are also two 

deflection plates located perpendicular to these three plates. The flight tube chamber is 

differentially pumped by a Varian VHS-6” diffusion pump, 1500 L/s (He). The operating 

pressure is 5x10 -5 torr for the source chamber and 1 x 10 -7 torr for the flight tube chamber.
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 A typical experiment starts with the opening of the pulsed valve, followed by the 

generation of the metal cations by vaporization of a metal target inside the source chamber, 

using a second harmonic Nd:YAG laser at ~10 mJ/pulse, with a repetition rate of 5- 8 Hz.  

The laser-ablated metal ions perpendicularly cross the expansion stream 8 mm from the 

ablation target where they react with the neutral molecular clusters. The result is an ionic 

cluster beam, collimated with a 5 mm diameter skimmer 10 cm down the stream, which 

then travels to the second high vacuum chamber, differentially pumped, passing 

symmetrically between the repeller and the accelerator. This chamber is maintained at an 

operating pressure of 1.0x10-7 torr.  The cationic clusters are then introduced into the 

extraction region, which consists of three pulsed grids: repeller, accelerator and ground 

plates, the accelerator and the ground plates are constructed from 90% transmission copper 

wire mesh. The cluster ion beam is then analyzed using a pulsed TOF mass spectrometer. 

Most of the cluster ions were studied using a one-Pulser setup. One Pulser setup consists of 

DEI GRX-3.0K-H pulsed high voltage divider. The dividing ratio is 8/10 for accelerator 

and repeller respectively. After acceleration, the product cations travel along the field-free 

1m-flight tube, and are then detected by a microchannel- plate detector (MCP) located at 

the end of the flight tube. The current from the detector is then amplified and recorded by a 

Tektronix TDS 210 oscilloscope as a function of time. It is then converted into mass using 

a linear square fit.  The mass spectra are usually accumulated for 128 laser shots and are 

transferred to the computer using a National Instrument interface board model (GPIB-

PCII).  The delay times between the nozzle opening, the laser firing, and the ion extraction 
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are adjusted to obtain the maximum signal intensities of the desired range of cluster size 

distribution. The time sequence for LVI-TOFMS is shown in Figure 3. 

 
 

 

Figure 2: Experimental setup of Time-of-flight mass spectrometer (TOFMS)for the 
generation of metal cation – containing molecular clusters.  
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Figure 3: Timing sequence for laser vaporization/ionization experiment. 
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2.4 Quadrupole Mass Selected-Ion Mobility-Quadrupole Mass Spectrometer (QMS- 

IM-QMS) 

The home-built instrument used in our laboratory 40,41 is a quadrupole mass selected-ion 

mobility-quadrupole mass spectrometer (QMS-IM-QMS).  In the following sections, the 

description of the instrument, gas phase ion mobility measurements, structure 

determination, and the experimental approach to study the mass selected cluster ions will 

be described in detail. 

2.4.1 Experimental Setup 

Figure 4 shows the setup for the QMS-IM-QMS. This set up consists of four stainless 

steel chambers. The source chamber is pumped by a Varian VHS 6” diffusion.  This first 

chamber is our source of the neutral molecular beam generated by a pulsed adiabatic 

supersonic expansion. In addition, this chamber houses a 5 mm skimmer that separates it 

from the second chamber.  The operating pressure for the source chamber is 5x10 -5 torr. 

The second chamber houses the first quadrupole (Q1).  This quadrupole mass filter is 

equipped with an axial electron impact ionizer, which ionizes the neutral molecular beam 

with electron energy of 10-150 eV.  An Edwards Diffstak 160/700 M diffusion pump with 

a pumping speed of 1300 L/s (H2) pumps the second chamber. A typical operating pressure 

is ~2×10-6.  After the ionization step either by laser vaporization or by electron impact the 

ions of interest are mass selected using the first quadrupole mass filter. This filters the ions 

according to their mass to charge ratio.  In the case of the ions that are generated by LVI, 
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the filament of the Ionizer is turned off and the voltage on the Ionizer lenses is adjusted in 

order to focus the ions beam into the first quadrupole mass analyzer.  This quadrupole can 

be used in mass selection mode (RF-DC mode) or an RF only mode. In mass selection 

mode, the ion of interest, with certain mass to charge ratio is allowed to transmit.  In RF 

only mode, a window of mass to charge ratio ions is allowed to go through the quadrupole.  

After the mass selection step, the ions will be focused and injected into the drift cell using 

a set of three Einzel lenses located in the third chamber, which houses two sets of ion 

transport lenses and a drift cell. An Edwards (Diffstak 250/2000P) diffusion pump with a 

pumping speed of 3000 L/s (H2) pumps this chamber.  Each Einzel lens consists of a three 

sets of lens. The third Einzel lens is biased to the horizontal part of the electrostatic gate 

located just before the drift cell.  This gate consists of four half-lenses two halves are 

horizontally opposite of each other, and other two are set vertically. One of the two 

functions of these sets is to steer the ion beam, horizontally or vertically, into the pinhole 

located at the middle of the entrance plate of the drift cell.  The other function is  an ion 

gate, which chops the wide ion beam pulse (~300 µs; proportional to the nozzle width) into 

10-50 µs ions pulses. The vertical part of the set is biased to the Einzel lens 3, while the 

other halves are connected to a separate power supply.  When the gate is closed, the two 

halves have equal voltages with opposite polarity (typically –200-240V and +200-240 V).  

This difference in polarity causes a strong deflection field, so that no ions will pass 

through. However, when the gate is open, polarity will be the same on both sets, therefore 

no deflection, and ions will pass through and enter the drift cell. 
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Figure 4: The experiment setup for mass-selected ion mobility spectrometer. 1) pulsed 
nozzle; 2) 5 mm skimmer; 3) electron-impact ionizer; 4) quadrupole mass 
filter; 5) ions transport lenses (Einzel Lenses 1, 2 and 3); 6) steering lens/ion 
gate; 7) drift cell; 8) to manometer; 9) ions transport lenses (Einzel Lenses 4, 5 
and 6); 10) quadrupole mass filter; 11) electron multiplier (detector). 
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The drift cell is composed of entrance and exit plates as well as three oxygen-free copper 

rings separated by two ceramic rings.  A voltage is applied to the entrance and exit plates 

from two independent power supplies and a homogeneous field is obtained across the cell 

through equal resistors (5 MΩ ) that connect all the drift cell components.  The entrance 

and exit plates have 1 mm orifice apertures.  The cell can be filled with buffer gas (usually 

He) through electrically insulated tubing.  The entrance and the exit plate’s orifices and the 

pumping speed of the diffusion pump limit the pressure inside the cell to ~2.5 torr of He. 

The cell is temperature controlled. It can be heated through two heating cartridges inserted 

into each ring, but the Teflon gasket limits the maximum temperature.  This gasket has a 

melting point (~ 250oC). The temperature of the cell is monitored by two K type (Omega 

CO1) thermocouples at each ring and the seventh K-type thermocouple that is attached to 

the exit plate near the orifice. The temperature of the cell is controlled by three temperature 

controllers (Omega type CN3251), which are connected to each ring, these help maintain 

the cell temperature within 1oC.  By flowing liquid nitrogen into three copper tubes 

wrapped around each cell ring we can also cool the cell. The flow of nitrogen is controlled 

using three sets of On-OFF solenoid valves. An Omega type CNi3233 temperature 

controller controls the solenoid valves. The minimum cell temperature that can be achieved 

is -170oC with a stability of ±1oC.  The ions that exit the drift cell are accelerated and 

refocused using another set of three Einzel lenses. The Einzel lenses transport and focus 

the exit ion beam to a second quadrupole mass filter with a mass range of 4000 amu. This 

second quadrupole is located in the fourth chamber, which houses a second electron 

impact/quadrupole mass filter and is pumped by Edwards Diffstak 160/700 M diffusion 
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pump with a pumping speed of 1300 L/s (H2).  A typical pressure of ~5-9×10-7 torr is 

achieved in the fourth chamber during the experiment. The second quadrupole 

spectrometer is coupled with a Channeltron electron multiplier detector. The detector 

signal flow to an ion counts preamplifier and is processed by Merlin software supplied 

from ABB Extrel. This quadrupole mass filter can be used either to mass scan the different 

ions exiting the drift cell or to monitor the intensity change for ions of certain mass to 

charge ratio. The arrival time of ions is obtained using a multichannel scalar. The ions 

arrival time distribution (ATD) represents the flight time of the ions from the ion gate to 

the detector. The timing sequence of the electron impact ionization experiments is shown 

in Figure 5. 
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Figure 5: Timing sequence for electron impact ionization experiment. 
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2.4.2 Mobility measurements 

The ion mobility is a measure of the velocity of the ion as it travels through non 

reactive buffer gas under the influence of a uniform electric field and it defined as: 44 

     K = υd/E         Equation 2 

K, is the mobility in cm2/V.s and E is the drift field applied along the cell (E = V/z, where V 

is drift voltage in Volt and z is the drift distance (8.9 cm in our system) and υd is the drift 

velocity.The measured mobility is proportional to the buffer gas number density and by 

convention it is converted to a reduced mobility (K0) :44,56 
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Where T is the buffer gas temperature in Kelvin and P is the buffer gas pressure in torr. 

Combining equations (2) and (3) and substituting for E gives 
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 t0 is time the ions spend outside the drift cell.  In the ion mobility technique, a narrow (50 

µs) ions pulse is injected into the drift cell, containing buffer gas (He), then the arrival time 

(td) is collected at different cell voltages, while keeping the pressure and temperature inside 

the cell constant. Then a plot the ion drift time td vs. P/V is plotted, this should give a 

straight line with a slope equal to: 
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The measured ATD can be compared with the calculated one using the transport theory 

(Equation 6) for flux of ions (φ(t)) in the drift tube with an aperture of area a and with a 

length of z. This is given by:56,57 
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The ions are introduced as a delta pulse in the form of an axially thin disk of radius r0 and 

uniform surface density s. The term s can be used as a scaling factor for the signal 

intensity, α is a constant, t is the time spent inside the cell, this time is obtained with 

subtracting the recorded arrival time (td) by the time spent by the ion outside the cell (t0), 

and DL and DT are the longitudinal and transverse diffusion coefficients, respectively, and 

under low field conditions are given by the equation: 
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2.4.3 Structure determination 

 The mobility and hence the collision integral, under the low field limit, is related to 

the geometry, and it can be calculated from Equation 8 42,43,58-60.  The low field limit is 

defined44 as E/N ≤ 6 Td (N is the buffer gas number density and Td = Townsend = 10-17 

cm2V),  
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qe is the ion charge, N is the buffer gas number density, m is the ion mass, M is the buffer 

gas mass, kB is the Boltzmann constant, Teff is the effective temperature. The effective 

temperature is defined as:44  

   
B

db
geff k

M
TT

3

2υ
+=       Equation 9 

and Ω(1,1)(Teff) is the temperature-dependent orientationally average collision integral.  

 In this study we have employed the DFT level of calculation with 6-31G** basis set using 

Gaussian 98 software61 to optimize the geometries of selected realistic structures for 

styrene dimer, +C16H16, and trimer,+C24H24.  The optimized structures are then used as 

input to a computer program (MOBCAL)42 obtained from the Jarrold group42,62,63. This 

program uses the trajectory approximation (Trajectory Method) to calculate the collision 

integral by averaging over the impact parameter and relative velocity. The potential 

employed in these calculations is a sum of 12-6 potential (Lennard-Jones) plus ion-induced 

dipole interaction.  The average collision integral (Ω(1,1)) is then obtained by averaging the 

collision integral over all possible collision geometries between the polyatomic ion and the 

buffer gas atom. 

2.4.4 Experimental Approach 

  Our approach is based on on-line analysis of the gas phase oligomers by mass-

selected ion mobility; this can be displayed in Figure 6.  In the experiments, styrene – 

Helium vapor mixture is heated to well-defined temperatures (350 – 370 K), thus allowing 

the establishment of a distribution of oligomers grown in the vapor phase by the thermal 

self-initiated process. The vapor mixture is then expanded through a supersonic pulsed 
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nozzle into vacuum thus allowing the adiabatic cooling of the vapor and the quenching of 

the polymerization process. The resulting styrene oligomers are then ionized by EI, mass 

selected through a quadrupole mass filter, and injected into a drift cell containing buffer 

gas (He) for the measurement of ion mobility and to study the fragmentation of the mass 

selected styrene oligomers ion.  

 The styrene monomer ion mobility measurements were conducted at room 

temperature (Tcell = 27.3 0C) with helium as the buffer gas.  First the styrene monomer ion 

(C8H8
+) is mass-selected by setting the first quadrupole in a mass selection mode while 

mass scanning the second quadrupole and the mass spectrum is collected.  The resulting 

mass spectrum is displayed in Figure 7.  Mobility measurements are made by injecting a 

narrow pulse (10 50 µs) of styrene monomer ions into the drift cell filled with Helium gas.  

Upon exiting the drift cell, the ions are collected and refocused into the second quadrupole 

for analysis and detection. The signal is collected on a multichannel scalar with the time 

zero for data acquisition set to the midpoint of the ion gate trigger.  Figure 8 shows the 

typical set of ATDs recorded at constant temperature and pressure with different electric 

fields across the drift cell. The reduced mobility is determined according to equation 5 by 

plotting td versus P/V.  Figure 9 shows the excellent linear correlation (R2 = 0.9995) of the 

recorded data.  The data shown in Figure 9 yields a slope of 1.010 × 10-2 (s·V/Torr), and an 

intercept of 55.66 µs (the time spent within the second quadrupole before the detection of 

the ions. The linear plot is inversely proportional to the reduced mobility. The reduced 

mobility, K0 = 9.22 cm2.V-1.s-1 is calculated using Equation 5.  Figure 10 displays a 

comparison of the experimental arrival time distribution to the predicted one from 
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transport theory using Equation 6.  This shows a good agreement between the experimental 

ATD and the theoretical one. 

 

 

 

 

 

Figure 6:  Schematic diagram of theexperimental  QMS-IMS-QMS approach to study the 
thermal self-initiated styrene polymerization in the gas phase 
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Figure 7:  Mass Spectrum of the mass selected (C8H8)+ obtained by 94 eV Electron Impact 
Ionization. Experimental conditions are: Source temperature is 70 oC, 40 psi He 
as carrier gas, injection energy is 15 eV, 2.007 Torr He inside the drift cell and 
25 V voltage difference between the entrance and the exit lenses  
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Figure 8:  Arrival time distribution of mass selected C8H8
+ ions at diffrent cell voltages : 

Experimental conditions are: 50 µs pulse width, injection energy is 15 eV, 
2.007 Torr  and the drift cell tempreature is 27.3 oC. 
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Figure 9:  Plot of the arrival time vs P/V for the mass selected styrene monomer ion 
C8H8

+.  The circles are the experimental and the solid line is the Least Square 
linear fit to the data points with R2 = 0.9995. 
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Figure 10:  Arrival time distribution of mass selected C8H8
+ ions (circles) and the 

predicted distribution from transport theory (solid line): Experimental 
conditions are : 50 µs pulse width, injection energy is 15 eV, 1.136 Torr He 
inside the drift cell, 20 V voltage cell temperature is 31.7 oC, difference 
between the entrance and the exit lenses and E/N = 4.01 Td. The reduced 
mobility Ko = 9.28 cm2V-1s-1. 
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CHAPTER 3 :  Ion Mobility Study of Styrene Oligomers 

3.1  Introduction 

The mechanism of the self-initiated polymerization (or thermal polymerization) of styrene 

in bulk liquids or solutions has been a challenging subject of research since the early days 

of polymer chemistry10-37.  Thermal polymerization or self-initiated polymerization of 

styrene has been studied extensively in bulk liquid and in solutions, and it is well known 

that styrene polymerizes upon standing33. In 1937, Flory36 studied the thermal 

polymerization of styrene.  He determined the experimental activation energy to be 32 

kcal/mol and ruled out the unimolecular initiation step; such as dissociation of a C-C or C-

H bond, or the opening of the double bond to yield divalent free radicals.  He showed these 

processes to be highly endothermic.  For example, the value for DC-C, the heat of 

dissociation of carbon - carbon bond, is about 75 kcal/mol and for C-H is about 95 kcal/ 

mol while the opening of double bond requires about 60 kcal/ mol.  Flory proposed a 

second order initiation- mechanism in which two styrene monomers coupled "tail-to tail" 

to form di-free radical stabilized by resonance and converted to monoradicals by H 

transfer. This can be summarized in equation 1. 

  PhCH=CH2 + PhCH=CH2 [PhC
.
HCH2CH2HC

.
Ph]                                      

 [PhC
.
HCH2CH2C

.
HPh] + PhCH=CH2       Ph

.
CH-CH3   + PhCH=CH2

.
CH-Ph    (1) 
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In 1946, Mayo 30 studied the rate of thermal polymerization of styrene at 127.3 oC as a 

function of the vapor pressure of the monomer in the polymerizing system. The rate was 

measured over the range 0-95% reaction.  The rate was found to be closely proportional to 

the square of the styrene concentration over the entire range.  This is in agreement with the 

bimolecular mechanism proposed by Flory 36.  In 1953, Mayo 20 also studied the rate and 

degree of the thermal polymerization of styrene at different temperatures (60, 155, and 

176oC) in bromobenzene as the solvent, with styrene concentrations ranging from 7.6 to 

0.05M.  The general conclusion was that the overall thermal polymerization was a second 

order reaction. However, at certain concentration ranges from 0.05 to 1.6M, the rate of 

higher polymer formation agreed much better with the 5/2-order relation.  Mayo proposed 

a termolecular reaction of styrene to give two monoradicals: 

3 (C8H8) -  CH3(Ph)C
.
H  (105 amu)   +    CH3(Ph)C=CH-(Ph)C

.
H ………(2) 

This proposed reaction was supported by the observed activation energy of 29 kcal/mol20. 

At this point, Mayo could not rule out the diradical mechanism since the number of double 

bonds lost is the same as in reaction 1.  In addition, the results showed that the dimer is 90 

% saturated; which led to the conclusion that the dimer is cyclic.  In 1961, Mayo 21 

identified the dimer products.  The major products were 1-phenyltetralin (1-PhT) (70%) 

and Diphenylcyclobutene (DCB) (15%). This important result was then verified in 1968, 

when Mayo and co-workers 22 isolated the styrene dimer products by gas – liquid partition 

chromatography, and then distinguished the products by their infrared absorption.  The 

major dimers were DCB and derivatives of 1-PhT.  Mayo proposed that these products 
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correspond to a non-radical thermal process with a Diels-Alder adduct type intermediate 

(AH)22.  The effect of the addition of Iodine on styrene polymerization was also 

investigated22.  The results showed that Iodine acted as a retarding agent for the styrene 

polymerization process.  However, the addition of Iodine accelerates the formation of 1-

PhT and decreases the formation of DCB22.  The results were rationalized by proposing 

that the role of Iodine is to assist in the isomerization of the proposed unstable (AH) 

intermediate, and that it converts this intermediate into 1-PhT.  These results were 

supported by Brown et al11.  Mayo proposed reaction pathways, as shown in Scheme 1, to 

account for the third-order initiation in the thermal polymerization of styrene.   

 

Scheme 1:  Proposed mechanism by Mayo to account for the third-order initiation in the 
thermal polymerization of styrene 
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 Kopecky et al 18,19 and Pryor et al 24-26,32,64  studied the mechanism of thermal 
initiation of styrene and the isotope effect of the thermal polymerization of deuterated 
styrene.  They compared the results with those of polystyrene initiated with Azo 
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compounds.  The ratio of kH/kD in the first case was found to be 1.8 and the major product 

was 1-PhT. In cases where the reaction was chemically initiated, the ratio was found to be 

kH/kD = 1.29.  The isotope study led to a conclusion that the hydrogen transfer to the third 

styrene molecule happens through concerted dimerization of two molecules of styrene. 

  Pryor et al 26 also studied the thermal polymerization of 2, 3, 4, 5, 6-

Pentaflourostyrene (PFS) , and identified the oligomers from PFS.  The major product was 

1, 2-diphenylcyclobutenes resulting from of 2+2 cycloaddition to form a 1, 4-diradical.  

This experimental result ruled out the Diels –Alder mechanism (AH) in PFS 

polymerization, since there was no condensation product such as 1-PhT.  They also 

measured the transfer constant of PFS and found it to be zero. The authors 32explained this 

result with the fact that the bond strength of C-F is higher than that of C-H bond strength.  

This is an important and useful clue in understanding the transfer mechanism for styrene’s 

monomers.  The work pointed out the important role of the unique H-atom in the AH 

adduct that is both tertiary and allylic.  The loss of this hydrogen atom is considered the 

driving force, since it allows the rearomatization to produce a resonance stabilized benzylic 

radical.  In an excellent review by Pryor 28 27, he discussed the question of diradical 

contributions in the transition state for Diels-Alder reaction.  He concludes that the actual 

mechanism of AH formation needs not to be specified in order to derive reasonable 

mechanisms for thermal initiation, which utilize AH.  In this review, Pryor summarizes the 

steps of the dimer and trimer formation as following:  After the formation of the AH 

intermediate, it will either react with a styrene molecule to produce two monoradicals in a 

solvent cage through Molecule Assisted Homolysis 33 (MAH), or form a styrene trimer (A-
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Sty ) through an ene reaction or through combination.  In this cage, disproportionation 

occurs and 1-PhT will be produced, or these two monoradicals diffuse out of the cage and 

then propagate into a polymer. In addition, he explains the formation of DCB side products 

through the diradical formation followed by its cyclization.  This can be summarized in 

Scheme 2 below: 

Scheme 2:  
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 In 1979 Barr et al 10 studied the thermal initiation of styrene polymerization from 

60-140 0C.  In this study, they measured the rate of free radical formation in the presence 

of free radical scavengers, Diphenylpicrylhydrazyl DPPH.  Their results strongly support 

the diradical mechanism for the thermal initiation of styrene polymerization.  In 1983 
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Solomon etal 65 studied the propagation step in the thermal polymerization in styrene.  In 

this study oligomers composed of 6-14 repeating units were extracted by HPLC and 

identified by 1H NMR66.  The spectra revealed that the styrene trimer has the structure 

below: 

 
Styrene Trimer 

 
Their results described and established the identity of the initiating radicals.  This, in 

addition to the previous studies, as mentioned above, confirmed Mayo's mechanism for the 

initiation process12.  In 2001 Kothe et al37 studied the formation rate constant for styrene 

dimers 1-PhT and DCB and obtained the associated Arrhenius plot.  Their main finding 

was that the styrene dimer formed via 2 + 4 Diels-Alder additions.  Their conclusion was 

based on the fact that the Arrhenius parameters  (log (A)(M-1s-1)) are known for various 2 

+ 4 Diels-Alder additions and range between 4.1 – 7.5.  The value they obtained was (log 

(A)(M-1s-1) = 4.4, which falls in the acceptable range.  This lends additional support to the 

dimer formation by a concerted Diels-Alder process. 

The work presented above involved the thermal polymerization of styrene in bulk liquids 

and solutions.  Few studies were concerned with the thermal self-initiated polymerization 

of styrene in the gas phase13,14,16,17,29. This process was demonstrated in 1986 – 198713 

CH3



www.manaraa.com

33 

using a nucleation approach where styrene vapor condenses on the growing polymers in 

supersaturated styrene vapor.  However, no direct information on the initiation mechanism 

or on the structures of the small oligomers are available to date. 

 In this work, we present the first direct evidence for the thermally self-initiated 

polymerization of styrene in the gas phase.  In addition, we report structural evidence that 

support and confirm the Mayo mechanism of thermally- self initiated of styrene 

polymerization in bulk phase. 

3.2   Experimental Results  

Figure 11 displays the mass spectrum of gas phase styrene clusters, +(C8H8)n, formed by a 

supersonic beam expansion.  In this case, the neutral styrene clusters travel 80 cm in 

vacuum (10-7 Torr, no buffer gas inside the cell) then ionized with the second EI ionization 

located just before the second quadrupole of the mass-selected ion mobility system (see 

Figure 4 in the experimental section).  This mass spectrum shows (styrene)n
+, n = 1-28, and 

doubly charged styrene clusters, (styrene)n
++.  These doubly charged styrene species begin 

to appear at n = 9.  Figure 12 shows the mass spectrum of the EI-ionized styrene clusters, 

+(C8H8)n  following their  injecting into the drift cell, filled with 1.5 Torr He gas, with 

injection energy (lab) 15 eV.  The mass spectrum was obtained when the first quadrupole 

was set in RF only mode while mass scanning the second quadrupole.  The mass spectrum 

displayed in Figure 12 shows styrene clusters contain up to nine molecules.  The 

observation of large styrene clusters ions following the injection of the clusters into the 

drift cell containing 1.5 Torr of helium suggest that these ions are strongly bound can 

survive collisions with high injection energies



www.manaraa.com

  34   

 

500 1000 1500 2000 2500 3000

23
(Sty)++

n

28

18
16

11

3

2

In
te

ns
ity

 (a
rb

. u
ni

ts
)

m/z

1

46
8

9

Figure 11: Mass Spectrum of (C8H8)n
+ clusters ions obtained by 65 eV Electron Impact 

ionization ( No He In the Drift Cell). Experimental conditions are: Source temperature is 
70 oC120 psi He as carrier gas. First quadrupole was off and second quadrupole was 
optimized at 936 amu. 
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Figure 12: Mass Spectrum of (C8H8)n
+ clusters ions produced by 90 eV Electron Impact 

ionization, and then injected into1.159 Torr He with 15 eV injection energy. 
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3.2.1  Dissociation products of mass selected styrene oligomer ions 

3.2.2 Dissociation products of styrene monomer ion, C8H8
+ 

 Figure 13 shows the mass spectra when the mass selected styrene monomer is 

injected into pure helium with injection energies of (Elab) 10, 30, and 70 eV.  At 10 eV the 

styrene monomer survived without fragmentation, however at 30 eV the mass spectrum 

shows masses at 104 with the highest intensity, and small fragments with m/z 103, 78 and 

77. These fragments represent the loss of hydrogen, C2H5, and C2H4, respectively.  At 70 

eV the mass spectrum shows peaks with m/z of 103, 78 and 77 with the highest intensity, 

and small fragments with m/z 104, 102, 95, 89, 65, 63, 52, 39, and 27.  The results are 

summarized in Table 1. 

Table 1: Dissociation products of mass selected styrene ion C8H8
+. 

 
Observed Massed (m/z) Formula 

104 C8H8
+ 

103 C8H7
+ 

102 C8H6
+ 

89 C7H5
+ 

78 C6H6
+ 

77 C6H5
+ 

65 C5H5 
63 C5H3

+ 
52 C4H4

+ 
27 C2H3

+ 
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Figure 13 : Mass spectra of the mass selected Styrene monomer ions (C8H8)+
 obtained by 

90 eV Electron Impact ionization, then Injected into 1.182 Torr He with different injection 
energies (lab) (10, 30 and 70 eV). Experimental conditions are: Source temperature is 70 
oC, 60 psi He as carrier gas, drift cell temperature is 32.1 oC and first quadrupole was set in 
mass selection mode at 104 amu. 
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3.2.3 Dissociation products of styrene dimer ion, C16H16
+ 

 Figure 14 shows the mass spectra when the mass selected styrene dimer was 

injected into pure helium with energies of 10,15, 50 and 70 eV.  At 10 eV, the mass 

spectrum shows the styrene dimer ion C16H16
+ (~90 %),(~10 % ) styrene monomer C8H8

+.  

At 50 eV, the mass spectrum shows peaks with m/z of 104 (~90%) with the highest 

intensity, and small fragments with m/z = 193, 180 130 and 117, corresponding to the loss 

of CH3, C2H4, C6H6 and C7H7, respectively. At 70 eV, in this case, the mass spectrum 

shows new peaks with m/z = 179, 178, 167, 166, 165, 115, 92, 91 78 and 77.  These 

observed peaks and their relative intensities are summarized in Table 2. 

Table 2: Dissociation products of mass selected styrene Dimer ion C16H16
+. 

 

Relative Intensity Observed 
mass (m/z) 

Formula. 
 10 eV 15 eV 50 eV 70 eV 

208 C16H16
+ 1000 1000 14 7 

193 C15H13
+ 5 2 6 7 

180 C14H12
+ 5 4 17 20 

179 C14H11
+ 5 2 2 10 

178 C14H10
+ 5 2 2 3 

167 C13H10
+ 5 2 2 3 

166 C13H9
+ 5 2 2 10 

165 C13H9
+ 5 2 2 7 

130 C10H10
+ 5 2 17 17 

117 C9H9
+ 0 2 8 10 

115 C9H7
+ 0 0 0 13 

104 C8H8
+ 77 154 1000 1000 

92 C7H8
+ 0 2 4 7 

91 C7H7
+ 0 2 14 17 

78 C6H6
+ 0 2 0 7 

77 C6H5
+ 0 2 0 0 
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Figure 14: Mass spectra of the mass selected styrene dimer ions, C16H16
+

 obtained by 90 
eV Electron Impact ionization injected into 1.182 Torr He with different 
injection energies (lab) (10, 30 and 70 eV). Experimental conditions are: 
Source temperature is 70 oC, 60 psi He as carrier gas, Drift cell temperature is 
32.1 oC and first quadrupole was set on mass selection mode at 208 amu. 
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The fragmentation pattern and dissociation products of mass selected styrene 
dimer,C16H16

+
,  is summarized in Scheme 3. 

Scheme 3:  Dissociation products of mass selected Styrene dimer ion C16H16
+
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By comparing the mass spectra of the mass selected styrene dimer to the monomer, it is 

worth noting that the peak with m/z of 91 (C7H7) was not observed in the case of the 

monomer fragments. 

  A preliminary study was conducted where the (styrene)n
+ was mass selected for n = 

1and 2 and injected into the drift cell which contains He gas with different injection 

energies (10 - 70 eV).  The ionization energy was varied from 30-120 eV at each injection 

energy and the ATDs were collected as well as the mass spectra. This is demonstrated in 

Figure 15. No difference was observed in the dissociation products when the ionization 

energy was increased.  Also, the ATDs were collected for both the monomer and the dimer 

at different injection energies and different electron impact energies. This is illustrated in 

Figure 15.  There was no difference in the arrival time or in the peak shape. These results 

suggest that no isomer formation was produced by the EI ionization process.  Of course, 

this dose not eliminates the possibility of having isomer ions that exhibit similar arrival 

time distributions. 
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Figure 15:  Arrival time distribution of mass selected C8H8
+ ions (lower five panels) and 

the styrene dimer ions C16H16
+ (upper four panels).  Experimental conditions 

are : 50 µs pulse width, injection energy is as shown , 1.182 Torr He inside the 
drift cell, 20 V voltage difference between the entrance and the exit lenses and 
and the cell Temperature at 32.1 oC (E/N = 5.97 Td). 
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3.2.4  Dissociation Products of Mass Selected Styrene Trimer ion, C24H24
+ 

 Figure 16 shows the mass spectra of the mass selected styrene trimer C24H24
+ that 

was injected into pure helium with injection energies 15, 30 and 70 eV.  At 15 eV the mass 

spectrum shows three masses, the m/z 312 amu with the highest peak of 90%, m/z 208  

with a peak of 4%, and m/z 206  with a peak of 6%.  There are no fragments corresponding 

to the loss of CH3 or C2H4, as in the case of the styrene dimer ion.  

 In the case of injection energy of 30 eV, the mass peak at m/z 312 remains the most 

intense peak, followed by several peaks at m/z = 208, 207, 206, 234, 221, 193, 180, 130, 

129, 128, 104, 92, 91,and 85. At an injection energy of 70 eV, the m/z 180 amu has the 

most intense peak, and there are new peaks at m/z of 166,143, and 117. This is 

summarized Table 3. 

In general, the dissociation products of mass selected styrene trimer, C24H24
+ (312), 

correspond to the loss of C6H6 , C7H7, C8H8, and C10H12 thus generating the peaks at m/z =  

234, 221, 208 and 180 respectively.  At the highest injection energy, the highest intense 

peak is the m/z 180 (C14H12), which corresponds to the loss of C10H12 from C24H24
+.  The 

fragmentation pattern and the dissociation products are summarized in Scheme 2. 
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Table 3: Dissociation products of mass selected styrene trimer ion C24H24
+

 

Relative Intensity Observed 
mass (m/z) 

Formula. 
 15 eV 30 eV 70 eV 

312 C24H24
+ 908 519 12 

234 C18H18
+ 27 90 12 

221 C17H17
+ 0 45 35 

208 C16H16
+ 27 139 82 

207 C16H15
+ 0 45 94 

206 C16H14
+ 38 60 59 

193 C15H13
+ 0 4 47 

180 C14H12
+ 0 60 165 

166 C13H9
+ 0 4 12 

143 C11H11
+ 0 0 59 

130 C10H10
+ 0 4 24 

129 C10H9
+ 0 0 71 

128 C10H8
+ 0 0 0 

117 C9H9
+ 0 0 35 

104 C8H8
+ 0 15 141 

92 C7H8
+ 0 10 71 

91 C7H7
+ 0 0 82 
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igure 16:  Mass spectra of the mass selected styrene trimer ions, C24H24
+

 obtained by 90 

 

50 100 150 200 250 300 350

20
6

208

312

Io
n 

In
te

ns
ity

 ( 
ar

b.
 u

ni
t)

Mass (amu)

10 eV

312

180
221

234

30 eV

208

20
7

20
6

129

70 eV

91+92

104
180

130

117

143

166

208

20
7

193 20
6

221

234 312

F
eV Electron Impact Ionization injected into 1.154 Torr He with different 
injection energies (lab) (10, 30 and 70 eV). Experimental conditions are: 
Source temperature is 80 oC, 60 psi He as carrier gas, drift cell temperature is 
30.7 OC and first quadrupole was set on mass selection mode at 312 amu. 



www.manaraa.com

  46 

 
 
 
 
 
 

Scheme 4:  Dissociation products of mass selected Styrene trimer ion C24H24
+. 
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3.2.5 Dissociation Products of Mass selected Styrene tetramer ion, C32H32
+ 

Figure 17 shows the mass spectra, when the mass selected styrene tetramer was 

injected into pure helium with injection energies 15, 30 and 70 eV. At 15 eV the mass 

spectrum shows peaks m/z = 416 (the most intense peak), 208, 206, 312, 221, and 130, in 

intensity decreasing order.  

At 30 eV the mass spectrum shows peaks at m/z 416 amu (still the most intense 

peak), followed by 208, 206, 312, 193 and 104.  At 70 eV the m/z 104 is the most intense 

peak, followed by the peaks at m/z = 208, 311, 312, 416, 206, 207, 180, 325, 338, 193, 

145, 129, 117, 92 and 91.  This is summarized in Table 4. 

Table 4: Dissociation products of mass selected styrene tetramer ion C32H32
+. 

Observed m/z (amu) Formula. 
 

Observed m/z (amu) Formula 

416 C32H32
+ 208 C16H16 

338 C26H26
+ 207 C16H15 

325 C25H25
+ 206 C16H14 

312 C24H24
+ 193 C15H13 

311 C24H23
+ 180 C14H12 

310 C24H22
+ 141 C11H11 

297, 
298 
299 

 

C23H23
+

 
C23H22

+
 

C23H21
+ 

130 C10H10 

284 C22H20
+ 117 C9H9 

246 C19H18
+ 104 C8H8 

234 C18H18
+ 92 C7H8 

221 C17H17
+ 91 C7H7 
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Figure 17:  Mass spectra of the mass selected styrene tetramer ions, C32H32
+

 obtained by 90 
eV Electron Impact Ionization injected into 1.154 Torr He with different 
injection energies (lab) (15, 30 and 70 eV). Experimental conditions are: 
Source temperature is 80 oC, 60 psi He as carrier gas, drift cell temperature is 
30.7 oC and first quadrupole was set on mass selection mode at 416 amu. 
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Simple comparisons between the mass selected styrene tetramer and trimer 

dissociation products ions to those in styrene dimer ion, indicate that no fragments 

corresponding to the loss of CH3 or C2H4 are observed.  In the case of mass selected 

tetramer dissociation products, peaks at m/z = 299, 298, and 297 were observed. This can 

be explained by the loss of CH from the m/z peaks 312, 311, and 310 respectively.  

However, none of these peaks were observed when styrene trimer was mass selected. This 

suggests that these fragments are produced from the dissociation of the styrene tetramer.  

The fragment at m/z of 284 can be explained by the loss of C2H4 from the styrene trimer, 

but again this peak at m/z 284 was not observed in the dissociation products of the mass 

selected styrene trimer ion.  This strongly suggests that the m/z 284 peak corresponds to 

the loss of C10H12 from the styrene tetramer ion.  This conclusion is supported by the fact 

that the mass selected styrene trimer dissociates mainly to C14H12
+ (m/z 180), as displayed 

in Figure 16, which correspond to a loss of C10H12 from the styrene trimer ion, C24 H24
+. 

In general, the dissociations products of the mass-selected styrene tetramer, 

C32H32,
+(m/z 416) show fragments corresponding to the loss of C6H6 , C7H7, C8H8, C9H9 

and C10H12 to give m/z peak at 338, 325, 312 , 299 and 284, respectively.  The 

fragmentation pattern and the dissociation products are summarized in Scheme 3. 

 

 

 

 



www.manaraa.com

  50 

Scheme 5:  Dissociation products of the mass selected styrene tetramer ion, C32H32
+. 
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3.2.6 Dissociation Products of Styrene pentamer ion, C40H40
+ 

Figure 18 shows the mass spectra when the mass selected styrene pentamer ion, C40H40
+ 

was injected into pure helium with injection energies of 10,15, 30 and 60 eV.  At injection 

energy of 10 eV the mass spectrum shows m/z peaks at 520, the most intense peak, 

followed by 312, 208, and 206.  At 15 eV, 512 amu is still the most intense peak, 

followed by 312, 311, 206, 208, and 416.  At 30 eV 520 m/z is still the most intense peak 

followed by peaks at m/z = 312, 311, 208, 206, 416,and 297.  At 65 eV the m/z 520 peak  

is still the most intense peak followed by peaks at m/z = 312, 311, 310, 208, 206, 416, 

415, 414, 234 and 324.  The mass spectrum also shows small peaks at m/z = 505, 478, 

442, 428, 130, 117, 104 and 91.  This is summarized in Table 5. 

Table 5: Dissociation products of mass selected styrene pentamer ion C40H40
+ 

 
Observed m/z (amu) Formula. Observed m/z (amu) Formula 

520 C40H40
+ 234 C18H18

+ 
505 C39H37

+ 221 C17H17
+ 

478 C37H34
+ 208 C16H16

+ 
442 C34H34

+ 207 C16H15
+ 

429 C33H33
+ 206 C16H14

+ 
416 C32H32

+ 193 C15H13
+ 

338 C26H26
+ 180 C14H12

+ 
325 C25H25

+ 141 C11H11
+ 

312 C24H24
+ 130 C10H10

+ 
311 C24H23

+ 117 C9H9
+ 

310 C24H22
+ 104 C8H8

+ 
297, 
298 
299 

 

C23H23
+

 
C23H22

+
 

C23H21
+ 92 C7H8

+ 

284 C22H20
+ 91 C7H7

+ 
246 C19H18

+   
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Figure 18:  Mass spectra of the mass selected styrene pentamer ions, C40H40
+

 obtained by 
90 eV Electron Impact Ionization injected into 1.154 Torr He with different 
injection energies (lab) (15, 30 and 60 eV). Experimental conditions are: 
Source temperature is 70 oC, 100 psi He as carrier gas, drift cell temperature 
is 30.0 oC and first quadrupole was set on mass selection mode at 520 amu. 
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 In general, the mass selected styrene pentamer ion C40H40

+ dissociates mainly to 

dimer and trimer, a small amount to the tetramer, with no dissociation into the styrene 

monomer.  The dissociation products of the mass-selected styrene pentamer C40H40
+

 (m/z 

520) also show fragments corresponding to the loss of CH3, C3H6, C6H6 , C7H7, and C8H8 

giving m/z peaks at 505, 478, 442, 429, and 416, respectively.  The fragmentation pattern 

and the dissociation products are summarized in Scheme 4.  It should be noted that the 

loss of CH3 was only observed in the dissociation products of styrene dimer and pentamer 

ions. 

 

Scheme 6:  Dissociation products of mass selected Styrene pentamer ion C40H40
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3.3  Mobilities of the Styrene Cluster ions 

 In this section the mobility measurements for styrene ions (C8H8 )n
+ are 

summarized for n = 1-8 .  The first part summarizes the mobility measurements at room 

temperature; the second part summarizes the mobility measurements for styrene dimer and 

trimer ions at different temperatures. 

3.3.1 Mobility of Styrene cluster ions (1-8) at room temperature 

 The mobility of the styrene oligomers cation (C8H8)n
+, for n = 1-8 were measured.  

In the case of the Oligomer ions with n = 1-5, the source was operated in pulsed beam 

mode. The measurements were conducted using mass selection in the first quadrupole, and 

the second quadrupole was operated in the mass selection mode.  In the case of n = 6- 8, 

the first quadrupole was operated in RF only mode.  All of the experiments were 

conducted using a 50 µs gate width.  In the case of the styrene monomer, ion mobility 

measurements were described in chapter 2, section 2.4. 

In the case of the styrene dimer ion mobility measurements were conducted at room 

temperature with helium as the buffer gas.  First the styrene dimer ion was mass- selected 

by setting the first quadrupole in mass selection mode and mass scan with the second 

quadrupole, and then the mass spectrum was obtained.  The mass spectrum is shown in 

Figure 19.  The typical set of ATDs was then recorded at constant temperature and 

pressure with different electric fields across the drift cell.  These were obtained by setting 

the second quadrupole in single ion mode and the average arrival times were recorded.  

The results are shown in Figure 20.  Figure 21 shows the excellent linear correlation (R2 = 
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0.9999) of the recorded data when plotted as td vs. P/V.  The data shown in Figure 21 

yields a slope of 1.553 × 10-2 (s·V/Torr), and an intercept of 88.02 µs (time spent out side 

the cell). The average reduced mobility, Ko = 5.8 ± 0.2 cm2.V-1.s-1 is calculated using 

Equation 5.  Figure 22 displays a comparison of the experimental arrival time distribution 

to the predicted one from transport theory using Equation 6.  The comparison shows an 

excellent agreement between the experimental and the predicted ATDs.  This may suggest 

that only one structure is present or that there is more than one structure, which exhibt the 

same mobility.  The mobilities of the higher styrene oligomers ion (C8H8 )n
+, with n = 3-8 

were measured and the measurements were repeated several times,  Figure 23 displays 

typical ATDs of the styrene oligomers ions (C8H8 )n
+ for n = 1-8 and Figure 24 shows the 

corresponding plots of td Vs P/V used to calculate the mobilities of  the styrene oligomers 

ions (C8H8 )n
+. Table 6 summarizes the gas phase mobilities of +(Styrene)n for n = 1-8 at 

room temperature.  Figure 26 through Figure 30 display the comparisons of the 

experimental arrival time distribution to the predicted distributions from transport theory 

assuming that the ATD peak contains only one structure for (Styrene )n
+ for n = 3-8, 

respectively. 
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Figure 19: Mass Spectrum of the mass selected (C8H8)2
+ obtained by 94 eV Electron 

Impact ionization. Experimental conditions are: Source temperature is 70 oC, 
40 psi He 50 µs pulse width, injection energy is 15 eV, 1.136 Torr He inside 
the drift cell, cell temperature is 31.9 oC, 25 V . 
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Figure 20: Arrival time distributions of the mass selected C16H16
+ ions.  Experimental 

conditions are: 50 µs pulse width, injection energy is 15 eV, 1.136 Torr He 
inside the drift cell, cell temperature is 31.9 oC, 25 V the voltage difference 
between the entrance and the exit lenses varies from 20 V to 6 V. 
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igure 21:  Plot of the arrival time vs P/V for the mass selected styrene dimer ions 
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igure 22:  Arrival time distribution of mass selected (C8H8)2
+ ions (circles) and the 
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F
predicted distribution from transport theory (solid line).  Experimental 
conditions are : 50 µs pulse width, injection energy is 15 eV, 1.136 Torr He 
inside the drift cell, cell temperature is 31.9 oC, 25 V the voltage difference 
between the entrance and the exit lenses and E/N = 6.26 Td. The reduced 
mobility Ko = 5.86 cm2V-1s-1. 
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Figure 23 : The measured Arrival time distribution of (C8H8)n
+ ions, with n = 1-7 with 

same E/N = 6.2 3 0.1. 

 
 
 
 

0 1000 2000 3000 4000 5000

(Sty)7
+

 

Time (µs)

(Sty)6
+

 

(Sty)5
+

 

(Sty)4
+

 

Io
n 

In
te

ns
ity

 ( 
ar

b.
 u

ni
ts

)

(Sty)3
+

 
 

(Sty)2
+

 

(Sty)1
+



www.manaraa.com

61 

 
 

Figure 24:  Plot of P/V vs average arrival time for styrene clusters ions ( 1- 7).  Legends 
are experimental data points and solid lines are the Least Square linear fit to 
the data points. 
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Table 6: Summary of the gas phase ion mobilities, of (Styrene)n

+, n = 1-8 at room 
temperature. 

 
 

n Ko(cm2V-1s-1) Ω ( /2) 

1 9.2 ± 0.4 58.6 ± 2.3 

2 5.8 ± 0.2 92.2 ± 3.7 

3 4.6 ± 0.2 118.6 ± 4.7 

4 3.6 ± 0.1 148.1 ± 5.9 

5 3.2 ± 0.1 166.4 ± 6.7 

6 2.6 ± 0.1 204.7 ± 8.1 

7 2.3 ± 0.1 231.3 ± 9.3 

8 2.28 ± 0.06  
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Figure 25:  Arrival time distribution of mass selected (C8H8)3
+ ions (circles) and the 

predicted distribution from transport theory (solid line).  Experimental 
conditions are: 50 µs pulse width, injection energy is 15 eV, 1.141 Torr He 
inside the drift cell, cell temperature is 30.88 oC, 20 V voltage difference 
between the entrance and the exit lenses and E/N = 6.21 Td. The reduced 
mobility Ko = 4.54 cm2V-1s-1. 
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igure 26:  Arrival time distribution of mass selected (C8H8)4
+ ions (circles) and the 
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F
predicted distribution from transport theory (solid line).  Experimental conditions are: 50 
µs pulse width, injection energy is 15 eV, 1.098 Torr He inside the drift cell, the drift cell 
temperature is 30.80 oC, 20 V voltage difference between the entrance and the exit lenses 
and E/N = 6.45 Td. The reduced mobility Ko = 3.55 cm2V-1s-1. 
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Figure 27:  Arrival time distribution of mass selected (C8H8)5

+ ions (circles) and the
 predicted distribution from transport theory (solid line).Experimental 
conditions are : 50 µs pulse width, injection energy is 15 eV, 1.024 Torr He 
inside the drift cell, the drift cell temperature is 31.5 oC, 20 V voltage 
difference between the entrance and the exit lenses and E/N = 6.45 Td. The 
reduced mobility Ko = 3.15 cm2V-1s-1. 
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Figure 28: Arrival time distribution of (C8H8)6
+ ions (circles) and the predicted 

distribution from transport theory (solid line).  Experimental conditions are : 
50 µs pulse width, injection energy is 15 eV, 1.272 Torr He inside the drift 
cell, the drift cell temperature is 29.9 oC, 20 V voltage difference between 
the entrance and the exit lenses and E/N = 5.55 Td. The reduced mobility Ko 
= 2.79 cm2V-1s-1. 
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Figure 29: Arrival time distribution of (C8H8)7

+ ions (circles) and the predicted 
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distribution from transport theory (solid line).  Experimental conditions are: 
50 µs pulse width, injection energy is 15 eV, 1.152 Torr He inside the drift 
cell, the drift cell temperature is 28.6 oC 20 V voltage difference between the 
entrance and the exit lenses and E/N = 4.88 Td. The reduced mobility Ko = 
2.50 cm2V-1s-1. 
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Figure 30: Arrival time distribution of (C8H8)8
+ ions (circles) and the predicted 

distribution from transport theory (solid line).  Experimental conditions are: 
50 µs pulse width, injection energy is 15 eV, 1.152 Torr He inside the drift 
cell, the drift cell temperature is 28.6 oC, 25 V voltage difference between the 
entrance and the exit lenses and E/N = 6.10 Td. The reduced mobility Ko = 
2.28 cm2V-1s-1. 
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3.3.2 Mobility of mass selected ions at different temperature 

 The mobility of the mass selected styrene dimer ion (C8H8)2
+ was measured at 453, 

373, 173, and 125 K.  Figure 31-34 show the observed ATDs and the predicted distribution 

from transport theory for a single isomer of styrene dimer ion (C8H8)2
+.  A simple 

comparison of the ATDs with the predictions from transport theory revealed that the 

distributions are significantly broader at low temperatures (at 173 and 123K). 

 In addition the mobility of the mass selected styrene trimer ion (C8H8)3
+ was 

measured at 123 K.  Figure 35 shows the experimental ATDs for styrene trimer compared 

with the predicted distribution from the transport theory for a single isomer.  The 

broadening of the distribution from the experimental compared to the theory suggests the 

presence of other structures for styrene trimer.  Table 7 summarizes the measured reduced 

mobilities (Ko) for the styrene dimer and trimer ions. 

Table 7: Summary of the average gas phase ion mobilities for the styrene dimer and the 
trimer at different drift cell temperatures. 

 
Drift Cell Temp.(K) Ko(cm2

V
-1

s
-1)(Styrene )2 Ko(cm2

V
-1

s
-1) (Styrene)3 

453 4.88 N/A 

373 5.34 N/A 

173 7.27 N/A 

125 7.78 6.20 
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Figure 31: Arrival time distribution of (C8H8)2
+

 ions at drift cell temperature of 453 K 
(circles) and the predicted distribution from transport theory (solid 
line).Experimental conditions are: 50 µs pulse width, injection energy is 15 eV, 
1.417 Torr He inside the drift cell, the drift cell temperature is 180.0 oC, 16 V 
voltage difference between the entrance and the exit lenses and E/N = 5.96 Td. 
The reduced mobility Ko = 4.88 cm2V-1s-1. 
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Figure 32:  Arrival time distribution of (C8H8)2

+
 ions at  drift cell temperature of 373 K 

(circles) and the predicted distribution from transport theory (solid 
line).Experimental conditions are: 50 µs pulse width, injection energy is 15 
eV, 1.278 Torr He inside the drift cell, the drift cell temperature is 99.70 oC 18 
V voltage difference between the entrance and the exit lenses and E/N = 6.12 
Td. The reduced mobility Ko = 5.34 cm2V-1s-1. 
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Figure 33:  Arrival time distribution of (C8H8)2

+
 ions at  drift cell temperature of 174.85 K 

(circles) and the predicted distribution from transport theory (solid 
line).Experimental conditions are: 50 µs pulse width, injection energy is 15 
eV, 0.812 Torr He inside the drift cell, the drift cell temperature is -98.3 oC, 
20 V voltage difference between the entrance and the exit lenses and E/N = 
5.02 Td. The reduced mobility Ko = 6.82 cm2V-1s-1. 
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Figure 34: Arrival time distribution of (C8H8)2
+

 ions at  drift cell temperature of 125.4 K 
(circles) and the predicted distribution from transport theory (solid 
line).Experimental conditions are: 50 µs pulse width, injection energy is 15 
eV, 1.430 Torr He inside the drift cell, the drift cell temperature is -147.25 oC 
,40 V voltage difference between the entrance and the exit lenses and E/N = 
4.09 Td. The reduced mobility Ko = 7.78 cm2V-1s-1. 
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Figure 35:  Arrival time distribution of (C8H8)3
+

 ions at drift cell temperature of 125.40 K 
(circles) and the predicted distribution from transport theory (solid line). 
Experimental conditions are: 50 µs pulse width, injection energy is 15 eV, 
1.026 Torr He inside the drift cell, the drift cell temperature is -147.75 oC 40 
V voltage difference between the entrance and the exit lenses and E/N = 5.69 
Td. The reduced mobility Ko = 6.20 cm2V-1s-1. 
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3.4  Styrene Oligomers Containing Cu+ and Ag+ Generated by LVI 

3.4.1 Ion Mobility Measurements of the Styrene Oligomers Containing Cu+  
 
 Figure 36 shows the mass spectrum of Cu+(C8H8)n. These cluster ions were 

produced by pulsed supersonic adiabatic expansion, followed by LVI of the Copper target.  

These ions were allowed to pass the first quadrupole mass filter, which was set in an RF 

only-mode, and then injected into the drift cell (containing He as a buffer gas) with the 

lowest injection energy possible.  After exiting the cell, the ions were focused into the 

second quadrupole where they were mass-scanned.  The mass spectrum in Figure 36 shows 

the Cu+(C8H8)n, (for n= 2-4), and the Styrene cluster ions (C8H8)n
+

, (for n= 2-9).  It is worth 

noting that Cu+(C8H8)2 ( 271 m/z) is extremely high in intensity compared to the other 

ions, and that a peak with m/z 269  is also observed, which can be assigned to Cu+C16H14.  

Although similar mass spectra were collected on many different occasions, yet the 

Cu+(C8H8)1 peak was never observed.  

 Ion mobility experiments were preformed on Cu+(C8H8)2, Cu+(C8H8)3 and (C8H8)2
+  

that observed in the mass spectra.  The average reduced mobilities (Ko) for these ions are 

summarized in Table 8   

 Figure 37-Figure 39 show the observed ATDs of Cu+(C8H8)2, Cu+(C8H8)3 and 

+(C8H8)2 at room temperature.  In addition, these figures display excellent agreements of 

the experimental arrival time distributions to the predicted ones from the transport theory. 

This suggests that only one structure is present in each case or if these are multiple 

structures, they must have essentially the same mobility.  In the case of Cu+(C8H8)2 the 
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comparison suggests that only one isomer is present.  To investigate this possibility, the 

mobility of the Cu+(C8H8)2 was measured at 173 K.  The experimental arrival time 

distribution of the Cu+(C8H8)2 and the predicted distribution from transport theory are 

displayed in Figure 40 which shows an excellent agreement between the experimental and 

calculated distributions.  This further supports the suggestion that only one isomer is 

present for Cu+(C8H8)2.  The mobility of the styrene trimer ion Cu+(styrene)3 could not be 

measured at low temperatures due to the very weak signal intensity. 
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Figure 36:  LVI Mass spectrum of Cu+(C8H8)n injected into pure He.  Experimental 
conditions are: 0.124 W Laser power,10 µs pulse width, gate entrance 100 V, 
1.520 Torr He inside the drift cell, the drift cell temperature is 26.3 oC, 
voltage difference between the entrance and the exit lenses is 60 V. 
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Figure 37:  Arrival time distribution of Cu+(C8H8)2 ions (circles)at drift cell temperature 
of 300 K and the predicted distribution from transport theory (solid line). 
Experimental conditions are: 0.124 W Laser power,10 µs pulse width, gate 
entrance 100 V, 1.520 Torr He inside the drift cell, the drift cell temperature 
is 26.48 oC, voltage difference between the entrance and the exit lenses is 20 
V.E/N = 4.59 Td. The reduced mobility Ko = 5.71 cm2V-1s-1. 

 



www.manaraa.com

  79 

 
 
 

500 1000 1500 2000 2500

 Io
n 

In
te

ns
ity

 ( 
ar

b.
 u

ni
t)

Experemental

ATD (µS)

Transport theory

 

Figure 38:  Arrival time distribution of Cu+(C8H8)3 ions (circles) at drift cell temperature 
of 300 K and the predicted distribution from transport theory (solid line). 
Experimental conditions are: 0.124 W Laser power,10 µs pulse width, gate 
entrance 100 V, 2.524 Torr He inside the drift cell, the drift cell temperature 
is 26.58 oC, voltage difference between the entrance and the exit lenses is 40 
V.E/N = 5.53 Td. The reduced mobility Ko = 4.90 cm2V-1s-1. 
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Figure 39:  Arrival time distribution of (C8H8)2
+ ions (circles) at drift cell temperature of 

299 K and the predicted distribution from transport theory (solid line).  
Experimental conditions are: 0.15 W Laser power, 10 µs pulse width, gate 
entrance 70 V, 1.384 Torr He inside the drift cell, the drift cell temperature is 
26.73 oC, voltage difference between the entrance and the exit lenses is 20 
V.E/N = 5.53 Td. The reduced mobility Ko = 5.72 cm2V-1s-1. 
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Figure 40:  Arrival time distribution of Cu+(C8H8)2 ions (circles) at drift cell temperature of 
173 K and the predicted distribution from transport theory (solid line).  
Experimental conditions are: 0.130 W Laser power,100 µs pulse width, gate 
entrance 110 V, 0.895 Torr He inside the drift cell, the drift cell temperature is 
-98.55 oC, voltage difference between the entrance and the exit lenses is 25 V. 
E/N = 5.70 Td. The reduced mobility Ko = 6.96 cm2V-1s-1. 
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Table 8:  Summary of the average gas phase ion reduced mobilities  (Ko) Cu+(C8H8)2, 
Cu+(C8H8)3 and (C8H8)2

+ produced by LVI. 

 
Species Ion Ko (cm2

V
-1

s
-1) at 304 K Ko(cm2

V
-1

s
-1) at 173 K 

Cu+(C8H8)2 5.7 6.96 

Cu+(C8H8)3 4.42 ---- 

(C8H8)2
+ 5.7 ----- 
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3.4.2   Ion Mobility Measurements of Styrene Oligomers Containing Ag+ 

 
 Figure 41 shows the mass spectrum of Ag+(C8H8)n.  The ions formed were the same 

as with Cu-styrene system, as described above.  It shows the Ag+(C8H8)n, (for n= 2 and 3), 

and the styrene dimer ion (C8H8)2
+.  In addition, a peak with m/z 313 is observed and is 

assigned to Ag+C16H14. As in the case of the Cu+/styrene system, the intensity of the 

Ag+(C8H8)2 (m/z 315)  is extremely high compared to the other ions.  Several mass spectra 

were collected on many occasions at different experimental conditions but in all cases the 

Ag+C8H8 was never observed only when the Ag+(C8H8)2 (first quadrupole set in RF only 

mode) was injected with high injection energy (entrance gate voltage set at 100 V) into He, 

the Ag+C8H8 was observed with a very weak intensity. Additionally, there were peaks with 

m/z 207 (C16H15
+) , 417 ( Ag+C24H22) and 455 (Ag+C24H24.2H2O).  Figure 42 displays the 

observed mass spectrum under the high injetion energy of Ag+(C8H8)2. 

 The ion mobilities for Ag+(C8H8)n, for n = 2 and 3 at room temperature, and  at 176 

K for Ag+(C8H8)2 were measured. These can be summarized in Table 9. 

 Figure 43-Figure 45 show the observed ATDs of Ag+(C8H8)2, Ag+(C8H8)3 and 

(C8H8)2
+ at room temperature.  These figures show small deviations of the experimental 

arrival time distributions from the predicted ones from the transport theory.  This suggests 

either more than one structure is present, or some of these species dissociate from higher 

channel (from larger oligomers).  In the case of Ag+(C8H8)2 there is tailing in the 

experimental arrival time compared to the predicted one.  To investigate this phenomenon, 

the mobility of Ag+(C8H8)2 was measured at drift cell temperatures of 173 and 123 K.  The 
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comparisons of Ag+(C8H8)2 arrival time distributions to the predicted distributions from 

transport theory (fitted to one isomer I) are displayed in Figure 45 and Figure 46 for 

temperatures 173 K and 123 K, respectively. These Figures demonstrate the existence of a 

second small peak, which assigned to isomer II.  It remains to be seen if this peak 

corresponds to the existence of another isomer (isomer II) or it represents a dissociation 

product from higher oligomers.  The arrival time of Ag+(C8H8)3 was collected at the same 

temperature (176 K) and compared to ATDs of Ag+(C8H8)2 under the same experimental 

conditions.  The arrival time of the Ag+(C8H8)3 matches well the arrival time of the small 

peak observed in the case of the Ag+(C8H8)2.  This may explain the tailing in the case of 

Ag+(C8H8)2. This comparison is shown in Figure 47.  The ion mobilities for Ag+(C8H8)n at 

different conditions are summarized in Table 9. 
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Figure 41:  LVI Mass spectrum of of Ag+(C8H8)n injected into pure He with the lowest 

injection energy (entrance gate set at 140V) where the first quadrupole set at 
315 amu in RF only mode. 
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Figure 42:  LVI Mass spectrum of of Ag+(C8H8)n injected into He with the entrance gate 
set at 100V,  the first quadrupole set at 419 amu in RF only mode. 
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igure 43:  Arrival time distribution of Ag+(C8H8)2 ions (circles)at drift cell temperature 
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F
of 300 K and the predicted distribution from transport theory (solid line).  
Experimental conditions are: 0.141 W Laser power, 20 µs pulse width, gate 
entrance 140 V, 1.548 Torr He inside the drift cell, the drift cell temperature 
is 26.73 oC, voltage difference between the entrance and the exit lenses is 18 
V.E/N = 4.06 Td. The reduced mobility Ko = 5.62 cm2V-1s-1. 
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Figure 44:  Arrival time distribution of Ag+(C8H8)3 ions (circles)at drift cell temperature 
of 300 K and the predicted distribution from transport theory (solid line).  
Experimental conditions are: 0.141 W Laser power, 20 µs pulse width, gate 
entrance 140 V, 1.552 Torr He inside the drift cell, the drift cell temperature 
is 26.73 oC, voltage difference between the entrance and the exit lenses is 20 
V. E/N = 4.50 Td. The reduced mobility Ko = 4.64 cm2V-1s-1. 
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Figure 45:  Arrival time distribution of Ag+(C8H8)2 ions (circles)at drift cell temperature 
of 176 K and the predicted distribution (for I isomer) from transport theory 
(solid line).  Experimental conditions are: 30 µs pulse width, entrance gate-
voltage energy is 100 eV, 0.908 Torr He inside the drift cell, the drift cell 
temperature is -97.0 oC ,40 V voltage difference between the entrance and the 
exit lenses and E/N = 6.10 Td. The reduced mobility Ko = 7.0(I) and 5.65(II) 
cm2V-1s-1. 
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igure 46:  Arrival time distribution of Ag+(C8H8)2 ions (circles)at drift cell temperature 
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F
of 124 K and the predicted distribution ( for I isomer)from transport theory 
(solid line).  Experimental conditions are: 30 µs pulse width, gate entrance- 
voltage 100 V, 0.643 Torr He inside the drift cell, the drift cell temperature 
is -149.0 oC, 27 V voltage difference between the entrance and the exit 
lenses and E/N = 6.04 Td. The reduced mobility Ko = 7.26 (I) and6.23 (II) 
cm2V-1s-1. 
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Figure 47: ATDS of Ag+(C8H8)2 ( lower inset) and Ag+(C8H8)3 at drift cell temperature 
of 176 K. 
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Table 9: Summary of the average reduced mobilities (Ko) Ag+(C8H8)2, and Ag+(C8H8)3 

produced by LVI  
 

Species Ion Ko  (cm2
V

-1
s
-1) 

at 300 K 
Ko (cm2

V
-1

s
-1) 

at 176 K 
Ko (cm2

V
-1

s
-1) 

at 123 K 
Ag+(C8H8)2 5.6 7.0(I), 5.65(II) 7.6 (I), 6.23(II) 

Ag+(C8H8)3 4.6 ----  
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3.5 Structure Determination of The Styrene Dimer and Trimer Cations 

  We have employed DFT level of calculations with the 6-31G** basis set using the 

Gaussian 98 software61 to optimize the geometries of different styrene dimer, C16H16
+, and 

trimer C24H24
+ isomers.  These geometries are based on the proposed formation 

mechanisms available to us from the literature18,19,27,28,30,31,33,35-37,46.  Eleven different 

isomers for the styrene dimer and four different isomers for the styrene trimer were 

considered.  The structures of the dimer isomers (Sty2 a-k) and for the trimer isomers 

(Sty3 a-d) are shown in Table 10Table 11, respectively.  The dimer isomers a and b were 

proposed by Flory36, isomer c was proposed by Kirchner and Patat35  isomer e can be 

formed via a cationic mechanism46, isomers g, h and i can be formed by bimolecular 

reactions of monoradicals31, and finally isomers j and k were proposed by the Mayo's 

mechanism.22 The DFT calculations were conducted by Dr. Yehia Ibrahim 

(yibrahim@vcu.edu), as part of the collaboration in this project. 

 The theoretical calculations of the possible structural candidates of the oligomers 

ions are then used to compute angle averaged cross sections (Ωs) for comparison with the 

measured ones42.  The calculations of Ωs at different temperatures using the MOBCAL 

program42.  Table 10Table 11 list the total energies of the optimized structures of the 

styrene dimer and trimer cations and the calculated reduced mobilities (Ko) and collision 

cross sections (Ω) using the trajectory methods (TM)42  at different temperatures.  The 

discussion of the calculated results and the correlation with the experimental value will be 

presented in section 3.7. 
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3.5.1 Styrene Dimer cation C16H16
+ 

Table 10: Optimized structures for styrene dimer cations at B3LYP/6-31** level, total 
energy E (in atomic units), calculated cross sections (Ω) and reduced mobility 
(Ko) using the trajectory methods(TM) at different temperatures. 

 

E (au) T (K) Ω (Å2) 
 

Ko 
(cm2.V-1.s)-1 

Sty2

a 

 

-619.068894309

125 

174 

303 

373 

453 

109.07 

101.08 

91.52 

88.74 

86.38 

7.66 

7.01 

5.86 

5.45 

5.08 

Sty2

b 

 

-619.058438800

125 

174 

303 

373 

453 

110.17 

101.59 

90.96 

88.18 

85.90 

7.58 

6.97 

5.90 

5.48 

5.11 

Sty2

c 

 

-619.061030344

125 

174 

303 

373 

453 

111.86 

102.96 

92.76 

90.16 

88.17 

7.47 

6.88 

5.78 

5.36 

4.98 
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T (K) Ω (Å2) 
 

Ko 
(cm2V-1.s)-1 

Sty2d 

 

-

619.057829871 

125 

174 

303 

373 

453 

108.30 

100.41 

91.18 

88.71 

86.68 

7.71 

7.05 

5.88 

5.45 

5.06 

Sty2e 

 

-

619.094975347 

125 

174 

303 

373 

453 

109.36 

100.44 

90.26 

87.48 

85.20 

7.64 

7.05 

5.95 

5.53 

5.15 

Sty2f 
-

619.058892784 

125 

174 

303 

373 

453 

105.91 

97.49 

87.54 

84.71 

82.55 

7.89 

7.26 

6.13 

5.71 

5.32 

Sty2g 

 

-

619.072926115 

125 

174 

303 

373 

453 

111.83 

103.03 

92.60 

89.68 

87.27 

7.47 

6.87 

5.79 

5.39 

5.03 
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T (K) Ω (Å2) 
 

Ko 
(cm2V1s)-1 

Sty2h 

 

-619.074115409 

125 

174 

303 

373 

453 

112.87 

104.60 

95.00 

92.39 

90.35 

7.40 

6.77 

5.65 

5.23 

4.86 

Sty2i 

 

-619.082484334 

125 

174 

303 

373 

453 

110.53 

102.34 

92.56 

89.81 

87.52 

7.56 

6.92 

5.80 

5.39 

5.01 

Sty2j 

 

-619.097408849 

125 

174 

303 

373 

453 

107.11 

98.41 

88.36 

85.68 

83.48 

7.80 

7.20 

6.07 

5.64 

5.26 

Sty2k 

 

-619.089475991 

125 

174 

303 

373 

453 

115.94 

106.48 

95.49 

92.55 

90.25 

7.21 

6.65 

5.62 

5.23 

4.86 
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3.5.2  Styrene Trimer cation C24H24
+ 

Table 11: Optimized structures for styrene trimer cations at B3LYP/6-31** level, total 
energy E (in atomic units), calculated cross sections (Ω) and reduced mobility 
(Ko) using the trajectory methods(TM) at different temperatures. 

 

E (au) T (K) Ω (Å2) 
 

Ko 
(cm2V1s)1 

Sty3a 

 

-928.780538965 
 

125 
303 

 

154.95 
127.01 

5.44 
4.20 

Sty3b 

 

-928.781075445 
 

125 
303 

 

153.47 
128.11 

5.47 
4.17 

Sty3c -928.781338626 
 

125 
303 

 

157.42 
128.09 

5.33 
4.17 

Sty3d 

 

-928.784490035 
 

125 
303 

 

142.95 
119.05 

5.87 
4.49 
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3.6 Exploratory Study of the Gas Phase Polymerization of Styrene Initiated with a 

Free Radical Initiator 

3.6.1   Experimental Results 

 In order to explore the possibility of the initiating the gas phase polymerization of 

styrene using a free radical initiator, we used the AIBN (2,2'-Azo-bis-isobutyronitrile 

(C8H12N4)) initiator.  First, the AIBN was allowed to decompose in the gas phase at T = 

94.7 oC and the EI mass spectrum was collected as shown in Figure 48-a.  The main m/z 

peaks observed are assigned to C8H12N2
+, C4H7N+, C4H6N+ and C3H4N+.  Second, styrene 

vapor was allowed to polymerize in absence of the initiator at T = 93.3 oC and the EI mass 

spectrum was collected as shown in Figure 48-b.  The mass spectrum shows the formation 

of the styrene dimer and its fragments ions.  Finally, when both styrene and AIBN vapors 

were heated to T = 95.4 oC, the resulting mass spectrum clearly indicated the formation of 

higher styrene oligomers up to styrene tetramer as shown in  Figure 48-c. In addition, a 

minor series [C8H12N2(C8H8)n
+, for n = 1-2] corresponding to the addition of styrene on 

C8H12N2
+ was also observed.  Other species observed correspond to C4H6N(C8H8)2

+ and 

C4H7N(C8H8)2
+, respectively.  It is very interesting to note that m/z peak 206 corresponds 

to C16H14
+is observed with significant intensity in the presence of styrene and AIBN.  This 

quiet different from the result obtained by heating styrene vapor in the absence of AIBN 

where the 206 m/z is a minor peaks as shown in Figure 48-b. 

Mobility measurement was carried out for the mass-selected styrene dimer (produced from 

a continuous flow of the heated styrene and AIBN vapors at T = 92.3oC) The measured 
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reduced mobility in He at 303 K was Ko= 5.82 cm2V-1s-1.  The Arrival time distribution of 

the mass-selected (C8H8)2
+ ions and the predicted distribution from transport theory are 

displayed in Figure 49. 
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Figure 48:  Mass spectra when the source contained: (a) only the initiator AIBN (2,2'-
Azo-bis- iso butyronitrile (C8H12N4) at T = 94.7 oC; (b) only styrene vapor at 
T = 93.3 oC and (c) styrene + AIBN at T = 95.4 oC. 
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Figure 49:  Arrival time distribution of mass selected (C8H8)2

+ (formed by EI of the 
continuous flow of the heated styrene and AIBN vapors at T = 92.3 
oC)(circles) and the predicted distribution from transport theory (solid line).  
Experimental conditions are: the source temperature is 92.3 oC, 50 µs pulse 
width, injection energy is 14 eV, 1.682 Torr He inside the drift cell, the drift 
cell temperature is 29.65 oC 25 V voltage difference between the entrance 
and the exit lenses. The measured reduced mobility Ko = 5.82 cm2V-1s-1. 
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3.7  Discussion of the Results for Styrene Dimers and Trimers 

 The styrene dimer formed in the gas phase has been a subject of several studies that 

established the covalent bonded nature of the dimer and suggested several cyclic structures 

for the dimer14,29.  However, to date no direct evidence has been reported to confirm the 

structure of the gas phase dimer.  In this work, we followed a systematic investigation to 

establish the nature of bonding and confirm the structures of the styrene dimers and trimers 

in the gas phase.  First, a dissociation energy (injection energy) study of the non-covalent 

benzene dimer was carried out and compared to the mass-selected styrene dimer ion.  This 

comparative study was carried out by the injection of the mass-selected benzene dimer 

under the same experimental conditions as in the styrene dimer.  The mass spectrum 

displayed in Figure 50 indicates that only 17 % of the benzene dimer population survived 

the 15 eV injection energy.  However, in the case of the styrene dimer ion 90 % of styrene 

dimer population survived the collisions with an injection energy of 15 eV.  Using the 

binding energy argument, the benzene dimer has a binding energy of 17.8 kcal/mol 40, 

which implies with a good confidence that the styrene dimer binding energy is 

significantly higher than 18 kcal/mol.  Secondly, when the mass-selected styrene dimer ion 

was injected into the drift cell, the ratio of styrene dimer to the dissociated monomer did 

not to change as the drift cell temperature was increased from 303 K to 453 K.  The 

resulting mass spectrum is displayed in Figure 51. From the dimer/monomer intensity ratio 

displayed in Figure 51 a binding energy of at least 28 Kcal/mol for the styrene dimer could 

be estimated assuming a non-covalent interaction.  Finally, further evidence was obtained 
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from the dissociation products the mass-selected styrene dimer (C16H16
+)(displayed in 

Figure 14), which shows the sequential loss of CH3, C2H4, C2H5, and C6H6 from the dimer.  

This reveals that the styrene dimer ion (C16H16
+) is a covalently bonded, since it 

dissociated with a characteristic loss of stable chemical fragments.  The injection energy 

and temperature studies together lead us to the conclusion that the styrene dimer is 

covalently bonded.  In the case of higher oligomers as in the case of styrene trimer ion 

(C24H24
+), the dissociation products of the mass-selected trimer show the sequential loss of 

CH3, C2H4, C2H5, C6H6 and C7H7.  This mass spectrum (displayed in Figure 16) shows that 

the styrene trimer ion mainly dissociates into m/z = 180 (C14 H12
+).  If this is weakly 

bonded it will dissociate into its monomer.  This indicates that the structure of m/z 180 

must represent a stable molecular ion resulting from the dissociation of the styrene trimer 

ion.  Similar conclusions can be drawn based on the dissociation products of the higher 

styrene oligomer ions presented in Figure 17 and Figure 18. 
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Figure 50: Mass spectra of the mass selected Benzene dimer ion, C12H12
+

 injected into He 
with 15 eV injection energy . 



www.manaraa.com

  105 

 

25 50 75 100 125 150 175 200 225

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

m/z

+S2

+S1

25 50 75 100 125 150 175 200 225

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

m/z

+S2

+S1

 

Figure 51: Mass Spectrum of the mass selected C16H16
+ obtained by Electron Impact 

ionization.  Injected with 15 eV into He, the drift cell temperature is 180.0 oC. 
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 After establishing the covalent nature of the gas phase styrene oligomers observed 

in our experiments, it is important to provide direct structural information on these 

oligomers.  The combination of the measured collision cross sections and theoretical 

calculations can provide accurate structural information on the ionized styrene oligomers.  

The experimental based structure can be further confirmed by the analysis of the 

dissociation products of the mass-selected styrene oligomers ions.  The comparisons of the 

measured cross sections of styrene dimer and trimer ions at different temperatures with 

those calculated for the lowest energy structures representing different formation 

mechanisms are summarized in Table 10 and Table 11. 

 In the case of styrene dimer ion, the measured and the calculated cross sections at 

different temperatures are displayed in Figure 52-Figure 55.  Figure 52 shows that the 

measured cross section at 125 K agrees with the calculated cross sections of structures j, e, 

i, a, d, f and b within the experimental error (5%).  However, isomer j (1-Phenyltetralin) is 

the lowest in energy structure closest to the measured cross section at 125 K.  At 174 K the 

measured cross section is still in agreement with the theoretical one of the lowest energy 

isomer j as shown in Figure 53. At room temperature (303 K) the lowest energy structure 

that matches the measured cross section is structure e (1-methyl 3-phenyl indane) as shown 

in Figure 54.  At the highest temperature used of 453 K, the measured cross section is in 

agreement with the theoretical structures corresponding to isomer k (1, 3 diphenyl but-1-

ene) and h (1, 4 diphenyl but-1-ene) as shown in Figure 55, however isomer k is the lower 

in energy compared to isomer h, and therefore, isomer k is the proposed structure at 453 K.  
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The comparison between the measured and the calculated cross-sections of the styrene 

dimer at different temperatures is shown in Table 12.  

 

 

 

Table 12:  Summary of the experimental and theoretical cross sections for the styrene    
dimer. 

Temperature (K) Ω(exp) (Å
2 ) Ω(Calc) (Å

2 ) Structure 

125 108 107.1 j 

173 97.5 98.4 j 

303 92.2 90.3 e 

453 89.9 90.3 k 
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Figure 52:  The calculated cross section vs the energy of the optimized structures of  
C16H16

+ at 125 K.  The solid line is the measured cross section.  The calculated 
cross sections were obtained for the optimized structures using the trajectory 
methods42. 
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Figure 53: The calculated cross section vs the energy of the optimized structures of  
C16H16

+ at 174 K.  The solid line is the measured cross section.  The calculated 
cross sections were obtained for the optimized structures using the trajectory 
methods.42 
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Figure 54: The calculated cross section vs the energy of the optimized structures of  
C16H16

+ at 303 K.  The solid line is the measured cross section.  The calculated 
cross sections were obtained for the optimized structures using the trajectory 
methods.42  
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Figure 55: The calculated cross section vs the energy of the optimized structures of  
C16H16

+ at 453 K.  The solid line is the measured cross section.  The calculated 
cross sections were obtained for the optimized structures using the trajectory 
methods.42  
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  The results shown in Table 12 indicate that there are three different isomers for the 

styrene dimer present under our experimental conditions.  However, only one peak in the 

arrival time distributions (ATDs) was observed even at a lower cell temperature of 125 K.  

Since the measured cross sections for most of the proposed structures are very close, 

within 5 %, a well-resolved peak for each isomer cannot be observed.  This is because our 

drift cell, has a resolving power of about 20.  Thus only isomers with more than 5% 

difference in cross sections can be separated. However, using the cross section of the three 

lowest energy isomers j, e and k in Table 12, we can construct composite of ATDs, which 

reproduce the measured ATDs.  Figure 56 displays a comparison of the measured ATD at 

305 K, of the styrene dimer cation (C8H8)2
+ with the predictions of transport theory for the 

three structural isomers j, e and k.  This Figure displays an excellent fit to the sum of the 

isomers j (1-phenyltetralin)(dashed line), k (1,3 diphenyl but 1-ene) (dots) and e (1-methyl 

3- phenyl indane) with a relative abundance of 36, 36 and 28%, respectively.  This 

suggests that at room temperature we have three structures j, k, and e.  This may also be 

verified by examining the dissociation products of the mass selected styrene dimer.  For 

example, the loss of the CH3 group supports the presence of isomers k and e. The loss of 

the benzene, C6H6 and C2H4 fragments supports the presence of both isomers j and e.  

Figure 57 and Figure 58 display the comparison of the measured ATDs, at 125 K and 453 

K, of the styrene dimer cation (C8H8)2
+ to the predictions of transport theory for the three 

structural isomers j, k and e.  At temperature of 125 K the best fit is obtained when the 

relative abundance of j, k and e isomers is 63, 31, and 6% respectively.  At a temperature 

of 453 K, Figure 58 indicates an excellent fit for isomers j, e and k when the relative 
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abundance is 11, 5 and 84 %, respectively.  The temperature study and the good 

comparison to the calculated ATDs for the three different structural isomers with the 

proper relative abundance indicate that upon injection and heating the cyclic isomers j and 

e are and converted into the linear structure k.  Unfortunately, those isomers could not be 

separated because of the resolving power of the current mobility cell.  It should be possible 

to separate the broad ATDs using high resolution drift tube with resolving power of 50-

10067. 

 Now, that the structures for styrene dimers have been determined, the mechanism 

of formation and the observed fragmentation pathways can be explained.  In the case of 

isomers j  (1-phenyl tetralin) and k (1,3 diphenyl but 1-ene), they both can be formed via 

the Mayo's mechanism21,22. In the case of the j isomer, two styrene molecules cyclize via 

Diels -Alder addition forming an intermediate (AH) followed by 1,3 H-Shift.  Upon 

ionization and then injection of the j radical cation, it losses C6H6 and C2H4 fragments to 

generate the dissociated products C10H10
+ and C14H12

+, respectively.  These fragments 

(with m/z = 180 and 130) were both observed in the mass spectrum as shown in Figure 14.  

Finally, in the case of isomer k, it can be formed upon a free radical attack (m/z 105) to a 

second styrene molecule followed by termination through disproportionation.  Upon 

ionization followed by injection, this radical cation can lose a CH3 fragment to generate the 

ion C15H13
+ (m/z = 193).  The C15H13

+ ion is observed in the dissociation products of the 

styrene dimer cation as shown in Figure 14.  Finally, isomer e (1-methyl 3phenyl indane) 

can be formed via a cationic mechanism68.  Upon injection, this dimer can be dissociated 

into C15H13
+ (m/z 193) by the loss of CH3, and into C10H10

+ (m/z 130) by the loss of C6H6.  
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Both of these product ions were observed in the mass spectrum of the mass selected 

styrene dimer as shown in Figure 14.  The formation mechanism and the fragmentation 

pathways are summarized in Scheme 7 

 In the case of styrene trimer ion, the measured cross section at room temperature 

(118.4 ± 4 Å2) agrees well with the 1-phenyl-4 (1-phenyl ethyl tetralin) structure (structure 

d).  At a lower temperature, 125 K, the measured cross section is (135.6 ± 5 Å2).  This 

favorably agrees with the cross section calculated at 125 K for the same structure d.  This 

structure is among the four structures investigated as shown in Table 11. 

 Table 13 compares the experimental cross sections of the styrene trimer ion to the 

calculated ones for the four proposed structures a, b, c and d shown in Table 11.  The 

comparison of the measured ATDs and the styrene trimer ions with those calculated based 

on structure (d) are shown in Figure 59 and Figure 60 at temperature 125 K and 303 K, 

respectively. At 303K, isomer (d) results in an excellent agreement between the measured 

and the calculated ATDs are obtained as shown in Figure 59.  However, at 125 K Figure 

60 indicates that there are probably other isomers present, although isomer d still 

contributes significantly to the ATD's.  The resolution of the mobility measurements is 

enhanced that is why Figure 60 provides strong indication that other trimer structures are 

present.  The other calculated structures shown in Table 11 (isomers a, b and c) result in 

ATDs quiet different from the experimental one at 125 K as shown in Figure 61.  Future 

calculations should focus on identifying other possible trimer isomers that can reproduce 

the ATD.  It should be noted that the proposed structure (d) for the gas phase styrene 
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trimer is identical to the structure of the trimer isolated from the solution polymerization of 

styrene and identified using NMR.65 

 Based on the 1-phenyl-4 (1-phenyl ethyl tetralin) structure of the styrene trimer ion, 

a scheme was constructed to explain the dissociation products observed in the mass 

spectrum of the mass selected styrene trimer cation (Figure 16).  The formation mechanism 

of the styrene trimer ion and the explanation of the observed dissociation products are 

summarized in the Scheme 8. 

 

Table 13: Summary of the experimental and theoretical cross sections for styrene trimer. 

Structure Theoretical 

a b c d 

Experimental (Ω) 

Ω (304 K ) (Å2) 127.0 128.1 128.1 119.1 118.4 ± 4 

Ω(125 K) (Å2) 155.0 153.4 157.4 143.0 135.6 ± 5 

Stabilization 
Energy (kcal/mol) 2.48 2.14 1.98 0.00  

 

 The above results indicate that the observed represent ionized neutral oligomers 

formed by vapor phase thermal polymerization of styrene.  This is supported by several 

specific considerations: first, the styrene liquid contained in the bubbler used to supply the 

styrene vapor in the experiments formed a gel-like solution when heated.  In addition, a 

thick film was deposited on the wall of the bubbler and inside the delivery line located 

before the expansion nozzle.  Second, the appearance of larger oligomer ions in the mass 

spectrum depends on the temperature and the duration of heating of the styrene vapor. 
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Third, the same ions were observed (although with much weaker intensity) by directly 

ionizing the heated styrene vapor (with no beam expansion), thus eliminating the 

possibility of styrene clusters.  This was achieved by removing the cluster source, the 

pulsed nozzle, thereby minimizing any expansion that would lead to cluster formation.  

Continuous flow was accomplished by using either a continuous nozzle or a capillary tube. 
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Figure 56: Comparison of the measured ATD of Styrene dimer (C8H8)2
+(circles) drifting in 

1.136 Torr He at 303 K (E/N = 4.38 Td), with the predictions of the transport 
theory for three structural isomers.  These isomers are j (1-phenyltetralin) 
(dashed line), e (1methyl 3-phenyl indane) (dots) and k (1,3 diphenyl but 1-ene) 
(short dots).  
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Figure 57:  Comparison of the measured ATD of Styrene dimer (C8H8)2
+(circles) drifting 

in 1.430 Torr He at 125 K (E/N = 4.38 Td), with the predictions of the 
transport theory for three structural isomers.  These isomers are j (1-
phenyltetralin) (dashed line), e (1-methyl 3-phenyl indane) (dots) and k (1,3 
diphenyl but 1-ene  (short dots).  
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Figure 58:  Comparison of the measured ATD of Styrene dimer (C8H8)2
+(circles) drifting 

in 1.418 Torr He at 453 K (E/N = 4.47 Td), with the predictions of the 
transport theory for three structural isomers.  These isomers are j (1-
phenyltetralin)(dashed line), e (1-methyl 3-phenyl indane) (dots) and k (1,3 
diphenyl but 1-ene) (short dots).  
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Scheme 7: Mechanism of the styrene dimers' formation and the explanation of the 
observed fragmentation pathways 
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2. Formation of isomer (k) in the gas phase through the Mayo’s mechanism:
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Figure 59:  Comparison between the experimental and the calculated ATD for the styrene 
trimer (d) at room tempreature (303 K).  Arrival time distribution of mass 
selected (C8H8)3

+ ions (circles) and the predicted distribution from transport 
theory (solid line).  Experimental conditions are: 50 µs pulse width, injection 
energy is 15 eV, 1.141 Torr He inside the drift cell, cell temperature is 30.88 
oC, 20 V voltage difference between the entrance and the exit lenses and E/N = 
6.21 Td. The reduced mobility Ko = 4.54 cm2V-1s-1. 
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Figure 60:  Comparison between the experimental and the calculated ATD for the styrene 
trimer (d) at 125 K ( solid line).Arrival time distribution of (C8H8)3

+
 ions at 

drift cell temperature of 125.40 K (circles).  Experimental conditions are: 50 
µs pulse width, injection energy is 15 eV, 1.026 Torr He inside the drift cell, 
the drift cell temperature is -147.75 oC 40 V voltage difference between the 
entrance and the exit lenses and E/N = 5.69 Td. The reduced mobility Ko = 
6.20 cm2V-1s-1. 
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Figure 61:  Comparison between the experimental and the calculated ATD for the styrene 
trimer (a, c and d) at 125 K .Arrival time distribution of (C8H8)3

+
 ions at drift 

cell temperature of 125.40 K (circles).  Experimental conditions are: 50 µs 
pulse width, injection energy is 15 eV, 1.026 Torr He inside the drift cell, the 
drift cell temperature is -147.75 oC 40 V voltage difference between the 
entrance and the exit lenses and E/N = 5.69 Td. The reduced mobility Ko = 
6.20 cm2V-1s-1. 
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Scheme 8: Mechanism of the styrene styrene trimer ions (C24H24
+) formation and the 

explanation of the observed fragmentation pathways: 
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The mass spectrum showed only styrene monomer, styrene dimer and their fragments as 

shown in Figure 48.  However, when the styrene vapor was passed over AIBN, the mass 

spectrum showed (styrene)n
+, n = 1-4 as shown in Figure 48.  This provides clear evidence 

that AIBN enhances the polymerization of styrene vapor.  AIBN is well known initiator 

that initiates styrene free radical polymerization in bulk the phase.  We were able to mass 

select the styrene dimer formed by AIBN initiator, and measure its mobility.  The 

measured mobility (Ko=5.82 cm2V-1s-1) is comparable to the ones obtained using the 

pulsed nozzle experiment. 

 A final experiment was performed to capture the actual initiating species in the gas 

phase thermal polymerization of styrene in the absence of any added free radical initiators.  

Styrene vapor was heated to 70-90 oC in a continuous flow using a capillary tube.  The 

resulting mass spectrum is shown in Figure 62.  It should be noted that under these 

experimental conditions, no expansion takes place and the number of collision. between 

the gas phase radicals and neutral styrene molecules should be very small.  It is interesting 

to note that the major ions formed in this experiment are the even-electron ions 

C16H15
+(m/z 207), C15H11

+( m/z 191) and C13H9
+(m/z 165).  This suggests that these ions 

are produced by the ionization of the free radical 207 amu and fragmentations of the 

generated C16H15
+ ion.  These fragmentations involved the loss of CH4 and C3H6 to 

generate the ions C15H11
+(m/z 191) and C13H9

+(m/z 165), respectively.  The observation of 

C16H15
+ ion (m/z 207) provides another strong evidence for the generation of the 207 amu 

free radical.  



www.manaraa.com

127 

 

 

 

 

80 160 240

C13H
+
9

C15H
+
11

20
8

195 231215

C16H
+
15

202
186

178

167

149

57

In
te

ns
ity

 (a
rb

. u
ni

ts
)

m/z
 

 

Figure 62:  Mass Spectrum of +(C8H8)n clusters ions produced by Electron Impact of the     
continuous flow of styrene vapor flown through a100 micron- needle. 
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(C16H15
.) in the gas phase. This is actually one of the primary radicals proposed by Mayo 

as initiator of the thermal polymerization of bulk styrene liquid. 

 These results support the assertion that styrene is thermally polymerized in the 

vapor phase.  This conclusion is supported by collision induced dissociation experiments 

of the mass-selected oligomer ions.  These experiments show elimination of specific 

molecular fragments (end groups) similar to typical polymer fragmentation69 thus 

confirming the covalent nature of the oligomer ions. Additionally, it is supported by the 

experimental mobility measurements, which agreed with the mobility calculated for the 

lowest energy structures. 

 The results also indicate that the electron impact ionization of expanded styrene 

vapor may induce styrene polymerization initiated by styrene radical cation within the 

generated styrene clusters.  This can be drawn from the fact that, one of the styrene dimer 

structures is 1-methyl 3-phenyl indane, which known to be produced by cationic 

mechanism. 

 Our results present direct evidence that supports and confirms the Mayo’s mechanism 

for styrene thermal polymerization.  As mentioned above Mayo proposed a termolecular 

reaction of styrene to form two primary radicals A (C16H15
.) 207 amu and MH 

(CH3CHC6H5
.) 105 amu.  In the mass spectrum of the continuous flow of styrene vapor 

using a capillary tube, we observed the ion (C16H15
+) m/z 207 correspond to the free 
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radical A..  This indicates that styrene vapor contains the initiating radicals A..  We did not 

observe the CH3CHC6H5
.) which correspond to m/z105. This may explain the gel-like film 

on the wall of the bubbler and inside the delivery lines.  The (CH3CHC6H5
.) radical has 

been reported to be more reactive than A (C16H15
.).  In addition, it may explain the 

dominance of the phenyltetralin derivative in gas phase styrene oligomers. 

 For the structure of the gas phase styrene trimer, strong evidence drawn from the 

experimental and theoretical mobility and the dissociation products of the styrene trimer 

ion indicates that the observed trimer has the structure of the lowest energy isomer (d).  

The formation of this isomer represents the combination of the two monoradicals (C16H15
.) 

and (C8H9
.).  This is consistent with Solomon's work 65and Pryor proposed -solvent cage28. 

Based on the results and discussion above, we propose the following mechanism for 

thermally initiated vapor-phase polymerization styrene:  After the formation of the AH 

adduct through Diels- Alder reaction, it will reacts with a third styrene molecule via 

Molecule Assisted Homolysis (MAH) to produce the two monoradicals A.(C16H15
.) and 

MH.(C8H9
.), or it forms a styrene trimer through a combination process.  If 

disproportionation occurs within the styrene clusters 1-PhT can be produced as dimer j.  

However, if the two radicals A.(C16H15
.) and MH.(C8H9

.) diffuse out of the clusters, they 

can propagate with styrene molecules to generate styrene oligomers.  This mechanism is 

summarized in Scheme 9. 
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Scheme 9: Proposed mechanism for styrene vapor phase thermal polymerization. 
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CHAPTER 4 :  Metal Cations containing Benzene Clusters. 

4.1 Introduction 

Ion-molecule interactions play an important role in a diverse range of chemical and 

biochemical systems.  Examples include substitution reactions, transmembrane ion 

transport, ion protein binding, upper atmospheric chemistry and nucleation phenomena2-

6,70. With a gas phase ion and an experimentally selectable number of neutral solvent 

molecules, intrinsic ion neutral interaction can be studied in the absence of counter ions 

and as a function of size.  After the discovery of Ferrocene 71,72and the revealing of its 

bonding ability to form a sandwich structure ,  researchers around the world studied metal-

benzene complexes in the condensed phase.  In the gas phase these complexes were 

studied experimentally through Equilibrium high pressure mass spectrometry,73-75 

Collision-induced dissociation(CID)73-75, photodissociation spectroscopy7,76-81, and 

theoretical calculations to reveal the electronic structures82.  Kaya and coworkers83-93 

studied transition metal-benzene complexes and found that early elements in the first row  

have the tendency to form sandwich structures and multiple-Decker sandwiches especially 

in the case of vanadium.  They also measured the ionization energy using the 

photoionization method by using a tunable UV laser.  This study showed that the gas phase 

metal-sandwich structure is the same as the studied structure in the condensed phase.  

Bowers and coworkers confirmed this result94.  They used the ion mobility technique to 
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study V-benzene complexes, confirming that Vn
+(C6H6)n+1 cluster ions also possessed the 

sandwich structures94.  Recently Duncan and coworkers studied V-Benzene complexes 

using vibrational spectroscopy for V-mono and dibenzene complexes7,76-80.  They showed 

that the first and the second benzene molecule were directly attached to the vanadium 

cation and that it possesses the sandwich structure.  The study also shows that the third 

benzene is weakly bonded to the sandwich structure.77 

  In this Chapter, cluster beam- time of flight mass spectrometry, coupled with laser-

vaporization ionization techniques were used to study the interactions between singly 

charged metal ions and benzene clusters.  The mass spectra of the metal cation-containing 

benzene clusters M+(C6H6) for M = Na, K, Mg, Ca, Ba, B, Si, Al, Ga, Ge, Sc, Ti, V, Cr, 

Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ag, Hf, W, Pt, Au and Pb, were investigated. 

 

4.2 Experimental Results 

 The metal cations were generated by vaporization/ionization of a metal target 

inside the source chamber using the second harmonic of Nd:YAG laser at ~10 mJ/pulse. 

Neutral clusters of benzene were produced by adiabatic expansion through the 0.5 mm 

pulsed nozzle at a repetition rate of 8 Hz.  The distance between nozzle and the metal rod 

is ~8 mm.  The jet was skimmed by a 3 mm conical skimmer and passed to the second high 

vacuum chamber maintained at 2.0x10-7 torr. The cluster ion beam was then analyzed 

using the pulsed TOF mass spectrometer. 

Figure 63 displays the TOF mass spectra and ion intensity distribution as a function of 

cluster size of M+ (benzene)n where M = Na and K.  In the case of Na+, the mass spectrum 
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shows that the major series observed is Na+(C6H6)n with local maxima at n =  3, 7, 13, and 

19.  In the case of K+, the mass spectrum shows the major series is K+(C6H6)n with local 

maxima at n =  1, 4, 13, 19, and 23. In all conditions (mostly deflection voltage, nozzle 

opening and delay ) M+(C6H6)13 is the strongest peak. 

Figure 64 displays the product distribution mass spectra and ion intensity distribution as a 

function of cluster size of M+ (Benzene)n where M is Mg, Ca and Ba. In the case of Mg+ 

the major series is Mg+(C6H6)n with local maxima at n =2, 13, 19, 21, 23.  At different 

conditions (mostly deflection voltage, nozzle opening and delay ) Mg+(C6H6)n, with n = 2 

and n =  13 are the strongest peaks. In case of Ca+ and Ba+ the mass spectra and ion 

intensity as function of cluster size distribution, also show local maxima at n = 1, 3, 7, 13, 

19 and 23.  The mass spectra also show a minor series due to ionized benzene clusters 

(C6H6)n
+ series. 

Figure 65 displays the mass spectra and ion intensity distribution as a function of cluster 

size of M+ (benzene)n where M is Ga and Al.  In the case of Al+ the major series is 

Al+(C6H6)n with local maxima at n = 13, 19, 23, 26, 29. At certain conditions Al+(C6H6)13 

is the strongest peak formation of Alm
+(C6H6)n with m = 1-3 cluster series can be 

observed.  The intensity plot for Al2
+(C6H6)n series exhibit local maxima at n = 3 and 13 . 

The intensity plot for Al3
+(C6H6)n series shows local minimum at n = 9.There are no 

(C6H6)n
+ or (C6H6)nH+ series in this case.  In the case of Ga+, the mass spectrum displays 

the major series as Ga+(C6H6)n with local maxima at n = 3, 13, 19, 23, 26, 29, 32, 37. At 

certain conditions (mostly deflection voltage and nozzle regime) Ga+(C6H6)13 is the 

strongest peak. At high laser ablation power, (C6H6)n
+ series and fragments of benzene 
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(m/z 51, 63 ) can be observed . These series are stronger at high laser power. This can be 

an indication of plasma ionization or direct multiphoton ionization of benzene. 

Figure 66 displays the mass spectra and ion intensity distribution as a function of cluster 

size of M+ (benzene)n where M = W and Mn and Cr.  In the case of W+ the mass spectrum 

shows that the major series is W+(C6H6)n with local maxima at n = 6, 13, 19, 23, 26.  

Formation of W2
+(C6H6)n cluster series can be observed starting from n = 1 .  In the case of 

Mn+, the mass spectrum shows that the major series is Mn+(C6H6)n with local maxima at n 

= 1, 7, 13, and 19. In the case of Cr+ the mass spectrum shows that the major series is 

Cr+(C6H6)n with local maxima at n = 1, 13, 19, 23, 26, 29 and 32.  At all conditions 

M+(C6H6)13 is the strongest peak for M = W, Mn and Cr. 

Figure 67 displays the mass spectra and ion intensity distribution as a function of cluster 

size of M+ (benzene)n where M+ is Sc and Zr.  In both cases the mass spectrum shows that 

the major series is M+(C6H6)n with local maxima at n = 2 and 13. 

Figure 68 displays the mass spectra and ion intensity distribution as a function of cluster 

size of M+ (benzene)n where M+ is Ni, Cu and Ag.  In the case of Ni+, the mass spectrum 

shows that the major series is Ni+(C6H6)n with local maxima at n = 1, 6, 13, 19 and 23.  At 

all conditions, Ni+(C6H6)13 is the strongest peak  In the case of Cu+, the mass spectrum 

shows that the major series is Cu+(C6H6)n with local maxima at n = 1, 7, 13, 19, 23, 26. At 

all experimental conditions Cu+(C6H6)13 is strongest peak. In the case of Ag+, the mass 

spectrum shows that the major series is Ag+(C6H6)n, with local maxima at n = 1, 13, 19, 23, 

26 and 29.  At all experimental conditions, Ag+(C6H6)13 is strongest peak. Under a variety 

of experimental conditions, there is strong minimum at n = 3 in the case of Ni+ and at n = 4 
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for Ag+ and Cu+. This can be shown in Figure 68, which displays the product distribution 

as a function of cluster size. 

Figure 69 displays the mass spectra and ion intensity distribution as a function of cluster 

size of M+ (benzene)n where M = Ti,V and Nb.  In the case of Ti+ the mass spectrum 

shows the major series is Ti+(C6H6)n  with local maxima at n = 2, 10, 14, 20, 24 and 27. 

At all experimental conditions, Ti+(C6H6)14 is the strongest peak.  In addition, we 

observed the formation of Tim
+(C6H6)n for m = 2, 3. Local maximum at m = 2 and n = 3 is 

observed in the intensity distribution for Tim
+(C6H6)n.  The (C6H6)n

+ series and fragments 

of benzene (m/z 51 and 63) can be observed. These series are stronger at high laser power. 

This can be an indication of plasma ionization or direct multiphoton ionization of 

benzene.  In the case of V+ product distribution, the major series is V+(C6H6)n with local 

maxima at n = 2, 14, 20, 24, 27,30 . At all conditions (mostly deflection voltage and 

nozzle regime) V+(C6H6)14 is the strongest peak.  In addition, we observed the formation 

of V2
+(C6H6)n cluster series starting from n = 1.  No clear magic numbers are observed in 

the intensity distribution for Vm
+(C6H6)n series.  In the case of Nb+ product distribution, 

the major series is Nb+(C6H6)n with local maxima at n = 2, 14 and 24. 

Figure 70 displays the mass spectra and ion intensity distribution as a function of cluster 

size of M+ (benzene)n where M+= Fe, Co and Pb.  In all cases the mass spectra show that 

the major series are M+(C6H6)n  with local maxima at n = 2, 14, 20, 24 and 27.  In addition 

we observed the formation of Fem
+(C6H6)n for m = 2, 3 series starting from n = 2 for 

Fe2
+(C6H6)n  and from n = 0 for Fe3

+(C6H6)n.  No clear magic numbers are observed in the 

intensity distribution for the Fem
+(C6H6)n series. 
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Figure 71 displays the mass spectra and ion intensity distribution as a function of cluster 

size of M+ (benzene)n where M = Si, Pt and Au.  In the case of Si+ the mass spectrum 

shows that the major series is Si+(C6H6)n with local maxima at n = 10, 16, 20 and 24.  At 

all experimental conditions, Si+(C6H6)10 is the strongest peak.  In the case of Au+ and Pt+ 

the mass spectra show the major series are M+(C6H6)n with local maxima at n = 11, 17, 

21, 24 and 27.  Table 14 summarizes the magic numbers observed in TOF mass spectra of 

the M+ (benzene)n clusters for all the metal cations studied. 
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Figure 63: TOF mass spectra and ion intensity distribution as a function of cluster    
size of M+ (Benzene)n where M = Na and K. 
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Figure 64:  TOF mass spectra and ion intensity distribution as a function of cluster 

size of M+ (Benzene)n where M =Mg, Ca and Ba. 
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Figure 65: TOF mass spectra and ion intensity distribution as a function of cluster   size of 

M+ (Benzene)n where M = Al and Ga. 



www.manaraa.com

140 

 

 
 
 
 
 

500 1000 1500 2000 2500 3000 3500 4000 4500 0 5 10 15 20 25 30 35 40 45 50

Mass (amu)                                  n ( Cluster size)

 

 

Io
n 

In
te

ns
ity

 ( 
ar

b.
 u

ni
ts

)

M
n+

Mn+B1

Mn+B
7

Mn+B
13

Mn+B
19

 

  

 

Mn+(Benzene)n
131

7

19

 

 

W+B
6 W+B13

W+B19

W+B23

 

W+(Benzene)n
6

13

19

23

 

Cr+B
13 Cr+B

26

C
r+ B

19

C
r+ B

23

C
r+ B

1

Cr+B29

 

  

 

Cr+(Benzene)n

13
19 23

26

29

32

 

Figure 66: Mass spectra and ion intensity distribution as a function of cluster size of M+ 

(Benzene)n where M = Cr, Mn and W. 
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Figure 67: TOF Mass spectra and ion intensity distribution as a function of cluster size of 

M+ (Benzene)n where M = Sc and Zr. 
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Figure 68: TOF Mass spectra and ion intensity distribution as a function of cluster size of 

M+ (Benzene)n where M = Ni, Cu and Ag. 
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Figure 69: TOF Mass spectra and ion intensity distribution as a function of cluster size of 

M+ (Benzene)n where M = Ti, V and Nb. 
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Figure 70: TOF Mass spectra and ion intensity distribution as a function of cluster size of 

M+(Benzene)n where = Fe, Co and Pb. 
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Figure 71: TOF Mass spectra and ion intensity distribution as a function of cluster size of 

M+ (Benzene)n where = Si, Au and Pt. 

 
 
 
 



www.manaraa.com

146 

 

Table 14: Summary of the observed magic numbers from the LVI-TOF mass spectra of the 
M+(C6H6)n clusters 

 
 

Element 
Atomic 

Radius (A) IP (eV) Magic Numbers of Bz 
Na 1.9 5.14 3,7,13,19 
Mg 1.45 7.65 2,7,13,19 
Al 1.18 5.99 1 ,3 ,13 ,19, 23 ,26 ,29 
Si 1.11 8.15 10,16,20,24 
K 2.43 4.34 1,4,13,19,23 

Ca 1.94 6.11 1,3,7,13,19,24,31 
Sc 1.84 6.56 2,13,20 
Ti 1.76 6.83 2,10,14,16,20,24,27 
V 1.71 6.75 2 6 14 20 24 27 
Cr 1.66 6.77 1,13,15,17,19,23,26,29 
Mn 1.61 7.43 1,7,13,17,19 
Fe 1.56 7.90 2 6 14 20 24 27 
Co 1.52 7.88 2,7,14,20,24,27 
Ni 1.49 7.64 2,6,13,19 
Cu 1.45 7.73 1,7,13,19,23 
Zn 1.42 9.4 Charge Transfer 
Ga 1.36 5.99 1,3,13,19,23 
Ge 1.25 7.90 1,3,7,13,17,19,21,26,29 
Zr 2.06 6.63 2,13,16,20 
Nb 1.98 6.76 2,14,20,24 
Ag 1.65 7.58 1,7,13,19,23,26,29 
Ba 2.53 5.2 1,3,13,19,21,24 
Hf 2.08 6.83 2,13,19,24 
W 1.93 7.98 1,4,13,19,23,26 
Pt 1.77 9.00 11,17,21,24,27 
Au 1.74 9.23 5,11,17,21 
Pb 1.54 7.42        2, 14, 20, 24 
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4.3 Discussion of the Results 

 Results from the TOF mass spectra and ion intensity distribution as a function of 

cluster size of M+ (benzene)n where  M = Na, K, Mg, Ca, Ba, B, Si, Al, Ga, Ge, Sc, Ti, V, 

Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ag, Hf, W, Pt, Au and Pb, as shown in Figure 63 - 

Figure 71 can be divided into three groups according to their magic numbers. 

Group 1 represent M+ (Benzene)n with magic numbers at n = 14 for M = Ti, V, Fe, Nb and 

Pb.  This group has additional magic numbers at n = 2, 20 and 23.  Group 2 has a magic 

number at n = 13, where M= Na, K, Mg, Ba, Sc, Al, Ca, Ga, Cr, Cu, Ag.  In most of these 

cases Group 2, enhancement in intensity at the smallest cluster size (n = 1) is observed, 

except for Mg+ and Sc+ where mass spectra show enhancement in intensity at n= 2.  At 

higher clusters, Group 2 exhibits strong peaks at n = 19, 24 and 27.  Finally, Group 3 

exhibits magic numbers at n =10 or 11 as in the case of M= Si, Au, Pt and Hf.  This group 

exhibits no clear magic numbers at small cluster sizes. In all three groups, at larger cluster 

size the addition of six benzene molecules were noted which created magic numbers at n = 

20 for Group 1, at n = 19 for Group 2 and finally at n = 16 or 17 for Group 3. This 

observation leads us to the conclusion that there are six favorable binding sites after the 

formation of the primary magic numbers at n = 14 or 13 or 10. 

The mass spectrum of the benzene clusters (C6H6)+
n generated by Electron Impact 

ionization41 is shown in Figure 72. The benzene cluster cations (C6H6)+
n with an enhanced 

intensities at n = 2, 14 and 20 were observed.  This pattern is similar to that observed with 

V+(C6H6)n ,Ti+(C6H6)n … etc. (Group 1).  However, in the case of neutral benzene clusters, 
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theoretical calculations suggest that (benzene)13 should form a stable structure arising from 

the arrangement of 12 benzene molecules in an icosahedral pattern around a central 

molecule95-98.  This structure has been observed as a magic number in many atomic cluster 

systems98.  The atomic icosahedral structure consists of a central atom covered by two 

staggered five-membered rings along the equator with each pole capped by another atom.  

Group 1 showed magic numbers at n = 14, 20 and 24.  A possible explanation for the 

stability of these magic numbers is that a metal cation sandwiched between two parallel 

benzene molecules forms the core ion for an icosahedral structure with the addition of 12 

benzene molecules around the core ion.  However, Group 2 showed a magic numbers at n 

= 13, 19 and 23.  In this case the icosahedral structure consists of a M+Bz1 core surrounded 

by 12 benzene molecules. 

In order to investigate the growth pattern of the magic numbers in the mass spectra and the 

nature of benzene binding to various metal cations, we collaborated with Dr. Shiv Khanna 

(VCU.  Physics Department) for DFT calculations.  Table 15 summarizes the calculated 

binding energies of one and two benzene molecules attached to the metal cation (M+).  

These binding energies were defined as following: 

 BE = E[M+(C6H6)1] - E[C6H6] - E[M+]          for first addition. 

BE = E[M+(C6H6)2] - 2*E[C6H6] - E[M+]      for second addition 

E is the total energy of the ground state structure. 

 

 

 



www.manaraa.com

149 

 

Table 15: Summary of the calculated binding energy of the first and the second addition of 
benzene to the metal ion. 

 
M+ Binding Energy (eV) 

 
M+(Benzene)1 M+(Benzene)2 

Ratio of the second 
addition to the first 

one 
Mg 1.55 2.09 1.35  
Al 1.65 2.23 1.35  
Si 3.03 3.67 1.21  
Ti 3.26 5.84 1.79  
V 2.87 6.06 2.11  
Fe 3.45 5.88 1.70  
Ni 3.41 4.9 1.44  
Ag 1.59 2.74 1.72  

 

  This table shows that the binding energy for the second addition of benzene molecule is 

the highest in the case of V+
, Ti+ and Fe+.  This reveals that the second benzene is stronger 

than the first one.  This may explain the magic number at n = 2 observed in the mass 

spectra of M+(C6H6)n  for M = V, Ti, Fe.  Figure 73 shows the ground state geometries for 

M+(C6H6)2, for M = V, Al and Si respectively.  Interestingly, at smaller cluster sizes, Group 

1 shows a magic number at n = 2.  This is in agreement with the sandwich structure 

consisting of a metal cation placed between two parallel benzene molecules. 

The M+(benzene)2 clusters have been well studied both experimentally and 

theoretically7,73-94.  In the case of Al+, Ag+ and Ni+ (Group 2), Table 15 shows that the 

second benzene molecule less bound than Group1.  In the case of the Si+ ion, the binding 

energy of the first benzene addition is very strong while the second addition of benzene 
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molecule is the weakest among the other metal cations.  In fact, Schwarz et al 99 reported 

the insertion reaction leading to the formation of HSi+C6H5, when the silicon cation 

interacts with benzene.  It can be inferred that the calculated binding energy and the 

structure together are responsible for the formation of magic numbers 14, 13, and 10 or 11 

in the mass spectra of the M+(benzene)n clusters..   
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Figure 72: Benzene clusters as obtained by Electron Impact Ionization. 
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Figure 73: The ground state geometries for M+(C6H6)2, for M is V, Al and Si.(Density 
Function Calculations carried by Prof. Shiv Khanna, Department of Physics,VCU.) 
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 The experimental results suggest a very interesting growth pattern for the 

M+(C6H6)n series , which, this can be affected by the core ion structure.  For example, 

consider the case of V+, DFT calculations show that the ground state structure is that V+ is 

sandwiched by two benzene molecules.  The addition of twelve benzene molecules to 

V+(C6H6)2 leads to the magic number V+(C6H6)14 observed in the mass spectrum.  The 

proposed structure can be viewed as icosahedral structure.  This structure requires that the 

core is a perfect sandwich; any canting in the core will break the symmetry of the 

icosahedral structure.  We propose that this is the case for Group 2, where the core ion is 

half a sandwich with the metal cation located above the center of the benzene ring.  Twelve 

benzene molecules surround this half sandwich core ion leads to the stable structure of 

M+(C6H6)13. 

The TOF mass spectra of Group 1 M+(C6H6)n showed an intensity dip at n = 3 for all the 

metal cations studied.  This may suggest that the third benzene molecule is not attached to 

the metal ion M+, and the result is a benzene-benzene interaction.  This is supported by the 

Duncan's observation 78,79 of a sudden increase in the IR-photodissociation efficiency of 

the mass selected V+(C6H6)n, at n = 3. 

 It is interesting to investigate the contribution of the low-lying metal cation excited 

states, since it can mix with the ground state or compete for the most stable bonding 

configuration100,101.  In a different project102 , we used  the mass selected ion mobility 

system to identify the ground and excited states produced from the Laser 

Vaporization/Ionization method.  Table 16 summarizes the results of various metal cations 

and their ground and excited state configuration. This table also shows the observed magic 
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numbers upon the interaction with neutral benzene clusters.  Interestingly, when the 

difference in energy between the ground and excited states is small (~ < 0.35 eV) a magic 

number at n = 2 and 14 was observed.  For example, in the case of the V+, the difference in 

energy between 3d4 (the ground state) and 3d34s1 (excited state) is 0.337 eV, and the TOF 

mass spectrum shows magic numbers at n = 2 and 14.  However, when this difference in 

energy is large (> 0.4 eV), the TOF mass spectrum shows magic numbers at n = 1 and 13.  

For example, for Cu+, the difference in energy between the 3d10 (the ground state) and the 

3d94s1 (the excited state) is 2.8 eV.  This may suggest that the sd hybridization effect 100 

plays a major role in the sandwich structure formation, that was observed for Group 1.  

This also explains why the second benzene addition bonds stronger than the first one in 

Group 1.  This is because the energetic cost of sd hybridization (small energy) is primarily 

paid for by the binding energy of the first benzene molecule to the metal cation. 
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Table 16: Summary of the excited states obtained from theLaser Vaporization/Ionization 
process102 

 
Ion Configuration Energy (eV) M+-Bz magic 

numbers 
V+ 3d4 

3d34s 
3d34s 

 

0.026 
0.363 
1.104 

 

2, 6,14, 20, 24, 
27 

Cr+ 3d5 

3d44s 
 

0.000 
1.522 

 

1,3,13,15,17,19,
23,26,29 

Ni+ 3d9 

3d84s 
 

0.075 
1.160 

 

2,6,13,19 

Fe+ 3d64s 
3d7 

 

0.052 
0.300 

 

2, 6, 14, 20, 24 
27 

Cu+ 3d10 
3d94s 

 

0.000 
2.808 

 

1,3,7,13,19,23 

Zr+ 4d25s 
4d3 

 

0.094 
0.406 

 

2,13,16,19 

Nb+ 4d4 
4d35s 

 

0.096 
0.421 

 

2,14,20,24 

Ag+ 4d10 
4d95s 

 

0.000 
5.034 

 

1,3,7,13,19,23, 
26, 29 
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CHAPTER 5 :  Solvation of Magnesium cation with clusters of polar molecules 

 
 
 
 
5.1 Introduction 

Reactions in solutions are highly dependent upon the medium and among them ion 

molecule reactions represent the best systems to study solvation effects at a microscopic 

level103.  Clusters offer an ideal medium to study the gradual effects of solvation on 

chemical reactions, which could lead to the stabilization of ionic intermediates3. 

Many groups, using different mass spectrometric techniques, have studied the solvation 

and the reactivity of water and methanol clusters containing group-II metal ions; 

magnesium, calcium, or strontium, in both the ground state and the excited electronic 

state103-111. Very intriguing size dependence has been found in the reaction of Mg+
 ion with 

H2O and CH3OH, where the dehydrogenation reaction was observed after the addition of 

five water molecules to Mg+.103-106 

Fuke and Iwata et.al 103-106 studied Mg+ and Ca+ with water, where the product 

MgOH+(H2O)n-1 was exclusively observed 106, for 6 < n < 14 in the mass spectrum.  

Similar product distributions were also observed for Mg+ / D2O, Ca+ / H2O, and Ca+ / D2O 

systems. In these systems, ion – molecule reactions within the clusters result in product ion 



www.manaraa.com

156 

series, which dominate the mass spectra after certain cluster sizes.  This phenomena is 

known as  “ Product switching”105.  Both M+(H2O) n and MOH+(H2O) n-1, where M+ = Mg+ 

or Ca+ were found to be formed with characteristic size distributions for the product ion 

switching at two critical sizes (n~5 and 14).  On the basis of these results as well as the 

results on the successive hydration energies of MgOH+, the origin of the first product 

switching for n ~ 5 was ascribed to the difference in the successive hydration energies of 

M+ and MOH+109.  With increasing cluster size, the product MOH+ -(H2O) n –1 lowers the 

energy of the system more than M+(H2O) n product, and at n > 5 the MOH+ -(H2O) n –1 

becomes the ground state of the system106. Castleman et.al 107 used flow tube instruments 

to examine the effects of solvation on the dehydrogenation reaction of Mg+ (H2O) n to 

produce MgOH+ (H2O) n-1, for n < 6. The reaction was observed to occur spontaneously at 

room temperature for n > 4.  Ligand switching reactions were used to show that Mg+-OH 

bonds are stronger than Mg+H2O bonds. The results show that the energy required to lose 

an H atom decreases with the number of water molecules attached because the magnesium 

ion changes its oxidation state and this results in stronger interactions with the water 

ligands. Their experimental results differ from the results of Saneketa et.al105 who observed 

the first product switching at n = 5, and attributed this result to the low temperature of the 

cluster beam source. This dehydrogenation reaction was also been observed by Martin 

Beyer et.al.108 using FTICR. 

As for the second product switching for n ~ 15, the origin is not self-evident.  Fuke et.al105 

proposed two possible mechanisms; the participation of the Rydberg-type ion-pair state 

M+2(H2O)n
- and the formation of a new reaction product such as MOH.H3O+(H2O)n-2.  The 
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former mechanism is based on the results for the photodissociation spectra of M+(H2O)n 

and is consistent with solution process of metal ions in bulk water.  At present, the former 

mechanism is considered to be much more plausible for understanding the switching. 

However, they could not rule out the latter mechanism within the experimental data.  

Sanekata et al. also carried out molecular orbital studies to confirm the first product 

switching105. 

These studies raised an interesting question as to whether cluster reactions would occur in 

other solvent clusters (e.g., CH3OH), which may provide valuable information regarding 

the reaction mechanism. In particular, the substitution of one H in H2O by a CH3 group 

may help to understand the H-elimination behavior of M+(H2O)n . As such, the substitution 

of H by CH3 offers an opportunity to investigate the structural effects of the molecular 

clusters on their reactions. It would also be interesting to see whether H- elimination or 

CH3- elimination is the dominant process. 

Many research laboratories have examined the interaction of Mg+ with methanol. An early 

study conducted by Uppal et al109 using an ICR spectrometer showed no reactivity of Mg+ 

ions toward methanol molecules. Kaya et al112 observed the formation of Mg+(CH3OH)n (n 

= 1 - 10) in a laser ablation-molecular beam system with a magic number at n = 2. They 

attributed this magic number to the formation of a first solvation shell of two methanol 

molecules around the Mg+ ion. However, Woodward et al.110 reported the formation other 

reaction products in addition to Mg+(CH3OH)n (n = 1 - 20)  such as, Mg+OCH3(CH3OH)n-1, 

(CH3OH)nH+, and [(CH3OH)n(H2O)]H+ (at large n values). Their experiment consisted of a 

supersonic expansion source for methanol clusters and metal vapor source. The nuetral 
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Mg(CH3OH)n clusters were ionized by electron impact. The main observation was a 

switching in the dominant product species at specific cluster sizes. They observed that 

Mg+(CH3OH)n clusters were the dominant species at n < 3 while at n = 4 the 

dehydrogenation product, namely Mg+OCH3(CH3OH)n-1 became dominant due to the 

formation of a more polarized ion core, which can be described as Mg2+−OCH3
−. The 

stability of Mg2+−OCH3
− was attributed to the stronger interaction between Mg2+ and 

−OCH3 and the higher enthalpy of solvation for M+−−OCH3
 than M+HOCH2

106. 

The switching reaction between Mg+(CH3OH)n and Mg+OCH3(CH3OH)n-1 was also 

studied by Lu et al111 in a reflectron TOFMS coupled with pulsed supersonic expansion 

source of methanol clusters and laser ablation source for Mg+ ions. They observed two 

product-switching regions. The first product switching region from Mg+(CH3OH)n to 

Mg+OCH3(CH3OH)n-1 at n = 5 and the second product switching from 

Mg+OCH3(CH3OH)n-1 to Mg+(CH3OH)n at n =15. They also carried out isotope studies by 

substituting the H atom in OH and CH3 groups by D.  They found that the OD group 

shifted the first switching region size from n = 5 to n = 6, while that of CD3 had no effect 

on the switching reaction. The isotope labeling of OH by OD also shifted the second 

switching from n = 15 to n = 14 while labeling CH3 group by CD3 had no effect. The 

authors rationalized the shift in the first switching region by suggesting that the OH bond 

can be broken during the hydrogen elimination and that substituting the OH by OD 

increases the energy required for the hydrogen elimination and thus Mg+(CH3OH)n 

required more methanol molecules for switching.  Minor reaction products such as 

H+(CH3OH)n, Mg+OH(CH3OH)n-1, Mg2(OCH3)2
+(CH3OH)n-2, and Mg2(OCH3)3

+ -
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(CH3OH)n-3 were also observed. The later two products indicated the formation of the 

dimer ion [Mg2
+]. The authors explained the formation of H+(CH3OH)n by electron impact 

ionization where the electrons were supplied from the laser plasma. The CH3 elimination 

product (MgOH+(CH3OH)n-1) was not observed at smaller n and was found to be 

endothermic by 16 kcal/mol (for n = 1)113-115. The authors excluded any contribution from 

electronically excited state Mg+ (2P), which is 102.2 kcal/mol116 higher in energy than the 

ground state Mg+ (2S), since no MgOH+ was observed. Ab initio calculations at SCF/6-

31G* level showed that three CH3OH molecules formed the first solvation shell around 

Mg+.  While in Mg+OCH3(CH3OH)4, all the oxygen atoms were found directly bonded to 

the Mg+. This structure reflected a Mg2+-like core where 6 ligands formed the first 

solvation shell for Mg2+. Ab initio calculations also showed a ∆E of 3.237 eV for the 

hydrogen elimination reaction of Mg+(CH3OH). While ∆E was calculated to be 0.055 eV 

for hydrogen elimination of Mg+(CH3OH)5. The sequential binding energies for 

Mg+(CH3OH)n [n = 1-5] were calculated to be 1.643, 1.269, 0.949, 0.756 and 0.588 eV, 

respectively. Those values agreed nicely with the bond dissociation energies measured by 

Anderson et al 117for Mg+(CH3OH)n [n = 1-3] of 1.51(0.07), 1.25(0.07), and 0.95 (0.09) 

eV, respectively but were lower than the value reported by Operti et al114of 2.65 eV for 

Mg+(CH3OH) which was observed from a photodissociation experiment. The ab initio 

calculations on Mg+OCH3(CH3OH)n-1 showed a more polarizable Mg+OCH3 core with 

charges of 1.9 and –1.3 on Mg+ and O of OCH3 respectively compared to values of 0.9 and 

-0.9 on Mg+ and O of CH3OH, respectively. The Mg+⎯O distance was shorter in 

Mg+OCH3(CH3OH)n-1 than in Mg+(CH3OH)n. Two-cages structure ([Mg+2(CH3OH)n][e-
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(CH3OH)m]) were proposed for the second product switching where one cage of methanol 

molecules is centered around Mg+2 and the other cage of methanol molecules trapped the 

free electron which inhibited the electron transfer to methanol molecules. Then the cages 

were stabilized by columbic interaction. This proposed structure was based on the ion-pair 

structure for Mg+(H2O)n 
105and Sr+(NH3)n

118,119 

 In this study, the solvation of Mg+ with polar solvents such as H2O, CH3OH, CH3OCH3, 

and CH3CN were investigated using pulsed supersonic beam expansion coupled with laser 

vaporization and mass spectrometry techniques. This allows further investigation of the 

role of polar solvents, role of ground electronic magnesium ion (Mg+(2S), and excited 

electronic magnesium ion (Mg+(2P) in the dehydrogenation reaction. Such studies would 

show whether cluster reaction occurs in other polar solvent clusters (ether and acetonitrile.  

The results provide valuable information regarding the reaction mechanism. In particular, 

the substitution of one H in H2O by a CH3 group may help to understand the H-

elimination behavior of M+(H2O)n. As such, the substitution of H by CH3 offers an 

opportunity to investigate the structural effects of the molecular clusters on their reaction. 

It would also be interesting to see whether H- elimination or CH3- elimination is the 

dominant process. 
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5.2  Experimental Results 

5.2.1 Mg+(H2O )n 

Figure 74 displays a typical TOF mass spectrum of water clusters containing Mg+. The 

major results can be summarized as following: First, Mg+ association reactions (1) with 

water are observed: 

   Mg+ + H2O → Mg+( H2O)n     …………………….(1) 

at n = 1-5, with a local maxima (magic number) at n= 4 observed under different 

experimental conditions such as nozzle width , carrier gas pressure, deflection voltage and 

the delay time.  Second, Figure 74 also shows two switching reactions. The first switching 

reaction from Mg+(H2O)n to MgOH+(H2O)n-1. This is observed at n> 6. A second switching 

reaction is seen from MgOH+(H2O)n to Mg+(H2O)n+2  at n = 13 . Interestingly, there is an 

intensity dip at the end of each cluster size region, where a switching is observed.  

5.2.2 Mg+(CH3OH )n 

The TOF mass spectra of methanol clusters containing Mg+ are displayed in Figure 75 and 

Figure 76. The mass spectrum of Mg+(CH3OH)n can be divided into three parts: 

First, the association reactions (2) are observed 

                                    Mg+ + n CH3OH→ Mg+(CH3OH)n  ……………..(2) 

 at n = 1-5, with a local maximal (magic number) at n= 3, observed under different 

experimental conditions such as nozzle width , pulser voltage, deflection voltage and the 

delay time. 
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 Figure 75 shows that the switching reaction (3) to MgOCH3 -(CH3OH)n-1 is observed at n 

> 6. Cluster size distributions (upper inset in Figure 76) show magic numbers at n= 7, 12 

and 14. 

Mg+(CH3OH)n → MgOH+(CH3OH)n-1                    (3) 

Also Figure 76 shows a back switching reaction (4) to Mg+(CH3OH)n at n> 15. 

MgOH+(CH3OH)m  → Mg+(CH3OH)n                     (4) 

Finally minor reaction products such as H+(CH3OH)n, Mg+OH(CH3OH)n, H+(CH3OCH3) 

and CH4
+ are also observed as shown in Figure 75. 

5.2.3 Mg+(CH3OCH3) n 

The TOF mass spectrum of Mg+ / ether clusters is shown in Figure 77.  The spectrum 

shows the association reaction (5) according to:  

   Mg+ + n CH3OCH3→ Mg+(CH3OCH3)n  ……………(5) 

Local maxima (magic number) at n= 3,15 and 21 are shown in the cluster ion distribution 

displayed in the inset of Figure 77.  These maxima are observed under different 

experimental condition such as nozzle width, pulser voltage, deflection and delay time. 

Figure 6 also shows protonated ether, but no dehydrogenation reaction is observed. 

5.2.4  Mg+(CH3CN)n 

Figure 78 displays the TOF mass spectrum of Mg+/(CH3CN)n clusters system. This mass 

spectrum shows the association reactions (6).  

Mg+ + n CH3CN→ Mg+(CH3CN)n                  (6) 
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 Local maxima (magic numbers) at n= 3, 6, 9 and 14 are observed, as shown in the inset of 

Figure 78. These maxima are observed at different experimental condition such as nozzle 

regime, pulser voltage, deflection and the delay time. Some other minor products are also 

observed as shown in Figure 79.  This product ions are MgCN+ (CH3CN)n  and 

CH3
+(CH3CN)n  this product is a result of an eliminations of CH3 and CN groups, 

respectively. 

 

5.3 Discussion of the Results 

Based on the results, this discussion will focus on three parts First: magic numbers and 

proposed structures; second: switching reactions, and finally: the origin of protonated 

clusters.  The observed magic numbers in the Mg+Xn systems where X = H2O, CH3OH, 

CH3OCH3 and CH3CN are shown in Table 17. 

Table 17: Summary of the magic numbers obtained from TOFMS. 
 

Solvated Cluster ions Magic Numbers 

Mg+(H2O)n 4 17 19 21 

MgOH+(H2O)n 5 10 13  

Mg+(CH3OH) n 3 16   

MgOCH3
+(CH3OH) n 6 11 13  

Mg+(CH3OCH3) n 3 15 21  

Mg+(CH3CN)n 3 6 9 14 
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In the Mg+ \ water experiments a magic number was revealed at n= 4 for Mg+ (water)n as 

shown in Figure 74.  This magic number may reflect the first solvation shell. However, the 

results from other groups suggested that the first solvation shell consists of three water 

molecules. The structure of Mg+(H2O)3 has a pyramidal structure; with all oxygen atoms 

are pointed directly toward the Mg+ ion.  Comparing Mg+(H2O)4 with the well known 

magic number H+(H2O)4, where H3O+ is the core ion hydrogen-bonded to three water 

molecules , we suggest that (MgOH2)+is the core ion in Mg+(H2O)4  and is shielded by 

three water molecules. This may explain the enhanced intensity of Mg+(H2O)n series at n = 

4.  In the case of Mg+ (M)n where M = CH3OH, CH3OCH3, CH3CN, the results show  

magic numbers at n = 3. Theoretical and experimental studies 111showed that three CH3OH 

molecules formed the first solvation shell around Mg+ where all the oxygen atoms were 

found directly bonded to the Mg+ ion. Ab initio calculations done by Dr Yehia Ibrahim 

(VCU Chemistry Department) show that it is the same case for ether and methanol, as well 

as the nitrogen atoms in the case of acetonitrile. The lowest energy structures are displayed 

in Table 18.and Table 20 summarizes the calculated binding energies for Mg+/ Polar 

molecules (ether, methanol and acetonitrile).  This table shows a sharp drop in the binding 

energy after the addition of the third molecule, as in the cases of Mg+/Water and 

Mg+/Acetonitrile.  This may reflect the formation of the first solvation shell at n = 3.  In the 

case of Mg+(CH3CN)4, the calculations showed that there are two possible isomers a and b 

as shown in Table 18.  In isomer a all the N atoms are directly bounded to Mg+ ion.  

However, in isomer b only three acetonitrile molecules are directly bonded to Mg+, 

forming a solvation shell, and the fourth molecule is outside the shell. 
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The mass spectra results are consistent with isomer b since the magic number at n = 3 was 

observed.  In comparing Mg+ (water)n clusters, with a magic number at n = 4, to the other 

polar solvent clusters, with the magic number 3, we may conclude that it is the role of 

hydrogen bonding among water molecules that stabilizes Mg+(H2O)4. 

 Our results indicate two switching reactions. First, the switching reaction from 

Mg+(H2O)n to MgOH+(H2O)n-1 at n > 5,  similar to the results obtained by other groups104.  

The ion product corresponds to stabilized Mg2+. This conclusion was based on an energy 

argument which showed that the production of MgOH+(H2O)n is more favorable at n > 5. 

On the other hand, Mg+(H2O)n is energetically more favorable at n < 5. This is due to the 

fact that the endothermic reaction (Mg+(H2O)1  →  MgOH+ + H) requires ~3.3 eV107.  

Adding five water molecules compensates for this endothermicity. Thus, the ion product 

MgOH+ becomes dominant in the mass spectrum at n > 5. All the experimental results are 

consistent with theoretical calculations which show it is energetically favorable to form 

Mg2+ and OH- at a higher degree of solvation.6 Comparing Mg+ / water clusters to Mg+ / 

methanol clusters, they appear to behave in the same manner in terms of the switching 

reactions. This may lead us to the conclusion that only one H atom is involved in the 

dehydrogenation reaction. On the other hand, no dehydrogenation reaction was observed in 

the case of ether or acetonitrile clusters. This may confirm the role of H (in (O-H)) atom in 

the dehydrogenation reaction.  The H atom from the CH3 group offers no contribution even 

though it is energetically more favorable.  From the Mg+ /methanol experiment minor 

reaction products such as H+(CH3OH)n, Mg+OH(CH3OH)n, H+(CH3OCH3) and CH4
+ were 

observed . These series were also observed by Lu et al111. The authors explained the 
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formation of H+(CH3OH)n by electron impact ionization with the electrons supplied from 

the laser plasma. The CH3 elimination product (MgOH+(CH3OH)n) was not observed at 

smaller n, and was found to be endothermic by 118 kcal/mol (for n = 1)113,114. The authors 

excluded any contribution from electronically excited state Mg+ (2P), since no MgOH+ was 

observed, which is 102.2 kcal/mol116 higher in energy than the ground state Mg+ (2S). 

However, our results showed the formation of MgOH+ as shown in Figure 71.  To 

investigate whether if there is any contribution from electronically excited state Mg+ (2P), 

we used our mass-selected ion mobility system 54 to separate ground and electronically 

excited states of Mg+.  Our results showed only one peak in the arrival time distributions, 

as shown in Figure77.  This peak was assigned to the ground state Mg+ (2S).  This is direct 

evidence which confirms the absence of the electronically excited, Mg+(2P), which may 

lead us to a conclusion that the Electron Impact process is responsible for the formation of 

the minor product ions that are observed in the mass spectra. 
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Figure 74: TOF mass spectra of Mg+(H2O)n 
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Figure 75: ToF Mass Spectra of Mg+(CH3OH)n 
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Figure 76: ToF Mass Spectra of Mg+(CH3OH)n, the upper inset is the ion intensity 
distribution as a function of cluster size, and the lower inset is TOF mass 
spectra from 100 amu to 250 amu. 
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Figure 77: TOF-Mass Spectra of Mg+(CH3OCH3)n, the  inset is the ion intensity 

distribution as a function of cluster size. 
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Figure 78: TOF Mass Spectra of Mg+(CH3CN)n, and the inset is the ion intensity 

distribution as a function of cluster size 
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Table 18: Calculated Structures of Mg+(X)n   Calculations done at UHF/6-31+G(d,p) level 

Mg+(CH3CN)n Mg+(CH3OCH3)n 

 
 

Mg+(CH3CN)1 
 

Mg+(CH3OCH3)1 
 

Mg+(CH3CN)2 
Mg+(CH3OCH3)2 

 
Mg+(CH3CN)3 

 Mg+(CH3OCH3)3 
 

Mg+(CH3CN)4 - a 
 

 

 
Mg+(CH3CN)4 - b 
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Table 19:  Calculated binding energy of Mg+Xn  (kcal/mol) done UHF/6-31+G(d,p) level. 

 
Molecule 

X 
n = 1 n = 2 n = 3 n = 4 

H2O117 28 22 17 11 

CH3OH 120 35 29 22  

CH3OCH3 40 28 20  

CH3CN 41 29 22 8 

* 
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Figure 80: Arrival time distribution of Mg+ ions, produced from LVI process. The 
experimental conditions are: 5 µs gate width, drift cell pressure ( He) = 2.497 
torr, drift cell temperature at 298.25 K and 42 V voltage difference across the 
cell 
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CHAPTER 6    Summary and Conclusions  

 
 
 The thermal self-initiated styrene polymerization in the gas phase was presented in 

Chapter 3. In this study, our experimental approach is based on on-line analysis of the gas 

phase oligomers by mass-selected ion mobility; this approach is described in Chapter 2. In 

the experiments, styrene – helium vapor mixture is heated to well-defined temperatures 

(350 – 370 K) thus allowing the establishment of a distribution of oligomers grown in the 

vapor phase by the thermal self-initiated process. The vapor mixture is then expanded 

through a supersonic pulsed nozzle into vacuum thus allowing the adiabatic cooling of the 

vapor and the quenching of the polymerization process.  The clusters (oligomers + 

monomers) are then ionized by EI, mass selected through a quadrupole mass filter, and 

injected into a drift cell containing helium buffer gas for the measurement of ion mobility.  

Ions exiting the cell are mass analyzed and collected as a function of time yielding the 

arrival time distributions (ATDs) as a function of P/V from which the mobilities and the 

collision cross sections (Ω) in helium are determined. 

 The mobility measurements can provide structural information on the ionized 

oligomers on the basis of their Ω, which depend totally on the geometric shapes of the 

ions. Theoretical calculations of possible structural candidates of the mass-selected 

oligomer ions are then used to compute angle-averaged Ω (using the trajectory method) for 

comparison with the measured ones. The agreement between the measured and calculated 

Ωs of the candidate structures provides reliable assignments of the structures of the 

oligomers. Furthermore, collisional-induced dissociation (CID) of the mass-selected 
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oligomers ions provide further support for the structures obtained from the mobility 

measurements. 

 That the oligomer ions represent ionized neutral oligomers formed by vapor phase 

thermal polymerization is supported by the following considerations: (i) the same ions are 

observed (although with much weaker intensity) by directly ionizing the heated styrene 

vapor (with no beam expansion), thus eliminating the possibility of styrene clusters, (ii) the 

appearance of larger oligomer ions depends on the temperature and the duration of heating 

of the styrene vapor, (iii) CID experiments of the mass-selected oligomer ions show 

elimination of specific molecular fragments (end groups) similar to typical polymer 

fragmentation thus confirming the covalent nature of the oligomer ions and (iv) thermal 

dissociation experiments at temperatures as high as 470K do not show the typical 

fragmentation by monomer evaporation expected from molecular cluster ions. 

  In the case of styrene dimer, DFT calculations [B3LYP/6-31(d,p)] were used to 

obtain the lowest energy structures of several styrene dimer radical cation isomers (11 

most likely isomers were considered).  The comparison between the calculated Ω with the 

measured ones showed that there are three structures present of styrene dimer, 1-phenyl 

tetralin, 1, 3 diphenylbut-1-ene and 1-methy-3-phenyl-indane. Further evidence supporting 

these structures comes from the CID results. The mass-selected dimer ion shows 

fragmentations by the loss of the CH3 group, which supports the presence of 1, 3 diphenyl 

but-1-ene and 1-methy-3-phenyl-indane.  The loss of the C6H6 and C2H4 groups supports 

the presence of 1-phenyltetralin and 1-methy-3-phenyl-indane.  Thus, the correlation 

between calculated and experimental ATD values and the CID results allows us to 
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determine that gas phase thermal polymerization of styrene involves the 1-phenyltetralin 

and the 1, 3 diphenyl but-1-ene dimers consistent with Mayo mechanism for the initiation 

process in the gas phase.  

 In the case of the styrene trimer, mobility measurements showed that the styrene 

trimer has the structure of (1-phenyl-4 (1-phenyl ethyltetralin).  The calculated ATD for 

this structure provides an excellent fit to the experimental ATD of the styrene trimer. This 

suggests that the styrene trimer is a product of the combination of two free radicals (C8H9
. 

and C16H15
.).  These two free radicals were proposed by Mayo's mechanism of the thermal 

polymerization of styrene in the bulk liquids.  The dissociation products of the mass 

selected styrene oligomer ions are consistent with the structures determined with the 

mobility measurements.  Finally, the similarity between the initiation mechanism of the 

thermal polymerization of styrene in the gas phase and in bulk liquids and solutions is 

remarkable and implies that the structures of the early oligomers in the gas phase are 

relevant to the understanding of the polymerization mechanisms in condensed phases. This 

is a very significant result because it allows oligomer structures generated by different 

initiation mechanisms to be quickly and reliably determined using the gas phase ion 

mobility methods. This approach provides a new and general way to study thermally and 

photochemically initiated gas phase reactions with the simultaneous identifications of the 

structures of the early reaction products.  

 In summary, we present here the first direct evidence for the thermal self-initiated 

polymerization of styrene in the gas phase and establish that the initiation process proceeds 
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via essentially the same mechanism (the Mayo mechanism) as in condensed phase 

polymerization. Furthermore, we provide structural identifications of the growing dimers 

and trimers in the gas phase. 

 
 In Chapter 4, we investigate the solvation of atomic metal cations within clusters of 

benzene molecules.  The solvation of a variety of metal ions by benzene clusters has been 

studied using laser vaporization, cluster beam and time-of-flight mass spectrometry 

techniques.  These techniques are described in Chapter 2.  In this work, strong magic 

numbers have been observed for the metal cation containing benzene clusters containing 

10, 13, and 14 molecules depending on the nature of the metal cation involved. The metal 

cations exhibiting the preference salvation by 14 benzene molecules show strong tendency 

to form sandwich structures, with two benzene molecules surrounding the metal cation. 

For V+, Ti+, Fe+,Nb+ and Co+, the results are consistent with a sandwich benzene dimer 

with the metal cation placed inside, and twelve benzene molecules around the 

M+(benzene)2 core.  For other metal cations such as Al+, Ga+, Mg+, and Si
+
, the stable 

sandwich structures for M+(benzene)n are not formed.  In these cases, the overall magic 

number can be 13 or 10 depending on the nature of the interaction between the cation and 

the benzene molecules.  

 In summary, the mass spectra of the M+(benzene)n can be divided into three groups 

according to their magic numbers.  Group 1 exhibits magic numbers at n = 14, for M = Ti, 

V, Fe, Nb, Co and Pb.  This group has additional magic numbers at  n = 2, 20 and 23.  

Group 2 has a magic number at n = 13, where M= Na, K, Mg, Ba, Sc, Al, Ca, Ga, Cr, Cu, 
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Ag.  In these cases, enhancement in intensity at the smallest cluster size (n = 1) is 

observed.  At higher clusters, Group 2 exhibits peaks at n = 19, 24 and 27.  Finally, Group 

3 exhibits magic numbers at n =10 or 11 as in the case of M= Si, Au, Pt and Hf..  For 

Groups 1 and 2 icosahedral structures are proposed, where M+(benzene)2 or M+(benzene)1 

forms the core ion.    This core is surrounded by 12 benzene molecules and resulting in an 

icosahedral structure. 

 Finally, in Chapter 5, the work is focused on the investigation of the intracluster ion 

molecule reactions following the generation of Mg+ within the polar clusters (water, 

methanol, ether and acetonitrile).  In the case of Mg+/ water and Mg+/ methanol, 

dehydrogenation reactions are observed after the addition of five molecules.  However, no 

dehydrogenation reactions are observed in the case of Mg+/ ether or Mg+/ acetonitrile 

clusters.  This confirms the role of the H atom in (O-H) in the dehydrogenation reaction 

and rules out any contribution from the H atom in the CH3 group.  In addition, the magic 

numbers in the TOF mass spectra of the Mg+Xn clusters (X= H2O, CH3OH, CH3OCH3 and 

CH3CN) have been investigated. Our results agree with the Ab initio calculations, which 

show that for these Mg+Xn clusters, the first solvation shell consists of three molecules. 

The structure of Mg+(X)3 has a pyramidal structure; with all oxygen atoms( or nitrogen 

atom in the case of acetonitrile) are pointed directly toward the Mg+ ion. 
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APPENDIX A 

Water Clusters Containing Metal Cations 
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Figure 81: TOF mass spectra of Si+(H2O)n 
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Figure 82: Si+( H2O)n, ion intensity distribution as a function of cluster size 
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Figure 83: H+( H2O)n, ion intensity distribution as a function of cluster size 
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Figure 84: TOF mass spectra of Mg+( H2O)n 
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Figure 85: Mg+( H2O)n, ion intensity distribution as a function of cluster size 
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Figure 86: TOF mass spectra of Al+( H2O)n 
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Figure 87: Al+( H2O)n, ion intensity distribution as a function of cluster size. 
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Figure 88: TOF mass spectra of Fe+(D2O)n 
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Figure 89: Fe+(D2O)n, ion intensity distribution as a function of cluster size 
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Figure 90: TOF mass spectra of Ni+(D2O)n 
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Figure 91: Ni+(D2O)n, ion intensity distribution as a function of cluster size 
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Figure 92: TOF mass spectra of Na+(H2O)n 
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Figure 93: Na+(H2O)n, ion intensity distribution as a function of cluster size 
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Figure 94: TOF mass spectra of K+(H2O)n 
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Figure 95: K+(H2O)n, ion intensity distribution as a function of cluster size 
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Figure 96: TOF mass spectra of Ca+(H2O)n 
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Figure 97: Ca+(H2O)n, ion intensity distribution as a function of cluster size 
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Figure 98: TOF mass spectra of Sc+(D2O)n 
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Figure 99: TOF mass spectra of Ti+(D2O)n 
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Figure 100: Ti+(D2O)n, ion intensity distribution as a function of cluster size. 
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Figure 101: TOF mass spectra of V+(H2O)n. 
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Figure 102: V+(H2O)n, ion intensity distribution as a function of cluster size. 
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Figure 103: TOF mass spectra of Cr+(D2O)n. 
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Figure 104: Cr+(D2O)n, ion intensity distribution as a function of cluster size. 
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Figure 105: TOF mass spectra of Co+(H2O)n. 
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Figure 106: Cr+(H2O)n, ion intensity distribution as a function of cluster size. 

 



www.manaraa.com

206 

100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

120

140

160

180

17

13

21

n= 21

D+(D2O)n

Mn+(D2O)n

 

Io
n 

In
te

ns
ity

Mass (amu)
 

Figure 107: TOF mass spectra of Mn+(D2O)n. 
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Figure 108: Mn+(D2O)n, ion intensity distribution as a function of cluster size. 
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Figure 109: TOF mass spectra of Cu+(H2O)n 
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Figure 110: TOF mass spectra of Pt+(H2O)n 
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Figure 111: Pt+(H2O)n, ion intensity distribution as a function of cluster size. 
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Figure 112: TOF mass spectra of W+(H2O)n 
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Figure 113: W+(H2O)n, ion intensity distribution as a function of cluster size. 
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